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ABSTRACT

EXACT SOLUTIONS OF INFINITE DERIVATIVE GRAVITY

Öcal, Sultan Eylül

M.S., Department of Physics

Supervisor: Prof. Dr. Bayram Tekin

Co-Supervisor: Assoc. Prof. Dr. Ercan Kılıçarslan

August 2021, 54 pages

Infinite Derivative Gravity (IDG) is a modified gravity theory which can avoid the sin-

gularities and Ultraviolet problem of gravity. This thesis examines the effects of IDG

on these problems. First, the propagators and Newtonian potential will be examined

as well as the conditions necessary for avoidance of singularities for perturbations

around Minkowski background are found. Second, we study the exact pp-wave and

AdS-plane wave solutions of quadratic and Infinite derivative gravity theories. We

construct exact gravitational shock and impulsive wave solutions of IDG. We have

demonstrated that unlike the Einstein’s general relativity, even though these waves

are created by linear sources having Dirac delta type singularities, singularities get

smeared by the non-local interactions. All the calculations are just a review.

Keywords: Infinite Derivative Gravity, Singularities, PP-wave, AdS-plane wave, Non-

local interactions
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ÖZ

SONSUZ TÜREVLİ KÜTLE ÇEKİM KURAMININ TAM ÇÖZÜMLERİ

Öcal, Sultan Eylül

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Bayram Tekin

Ortak Tez Yöneticisi: Doç. Dr. Ercan Kılıçarslan

Ağustos 2021 , 54 sayfa

Sonsuz türevli kütle çekim teorisi tekillikler ve morötesi problemler içermeyen modi-

fiye bir kütle çekim teorisidir. Tezde sonsuz türevli kütle çekim teorisinin bu problem

üzerindeki etkileri incelenecektir. İlk olarak, ilerleticiler Newtonyen potansiyel ince-

lenecek, bununla birlikte Minkowski arka planındaki pertürbasyonlar için tekillikler-

den kaçınmak amacıyla gerekli koşullar irdelenecektir. İkinci kısımda, kuadratik ve

sonsuz türevli kütle çekim teorilerinin tam pp-dalga ve AdS-düzlem dalga çözümleri

çalışılacaktır. Sonsuz türevli kütle çekim teorisinin tam kütle çekimsel şok ve impulsif

dalga çözümleri inşa edilecektir. Einstein genel görelilik teorisinin aksine bu dalga-

lar Dirak delta tipi tekilliklere sahip lineer kaynaklar tarafından oluşturmalarına rağ-

men, tekillikler lokal olmayan etkileşimler dolayısıyla ortadan kaldırılmalışdır. Tez-

deki tüm hesaplamalar önceden yapılmış çalışmaların yeniden gözden geçirilmelidir.

Anahtar Kelimeler: Sonsuz türevli kütle çekimleri, Tekillikler, PP-dalgaları, AdS-

uzayı, Lokal olmayan etkileşimler
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CHAPTER 1

INTRODUCTION

Einstein’s theory of General Relativity based on the Riemannian geometry which is

the geometrical theory of gravitation has been very successful at describing gravity.

It explains many important problems one of which is the precession of the perihe-

lion of the Mercury which was the the first success of GR. Additionally, it examines

gravitational red-shift, lensing and waves as well as predicting black holes. There-

fore, one can see that GR is the most successful gravitational theory, being almost

universally accepted as well as well confirmed by observations. Even though GR

provides successful solutions, there is not an exact quantum completion of gravity.

GR has an ultraviolet problem which is defined as cosmological and black hole types

of singularities. In other words, in the classical modifications, at small scales (UV

areas), the theory fails. Finite higher order theories may be helpful for the UV be-

havior, but result comes with a negative kinetic energy which is a ghost [1]. They

are physical excitations. These excitations are represented by a negative residue in

the gravitational propagator. This negative residue presents itself as negative kinetic

energy which leads to instabilities at a classical level and breakdown in unitarity at

the quantum level. Then, during the interactions, vacuum decays into positive and

negative energy states which is known as Ostrogradsky instability. Some attempts

exist to solve singularities by modifying gravity, such as the fourth derivative gravity,

resulted in the ghosts, where the Hamiltonian of the theory was unbounded due to the

Ostrogradsky instability. By adding higher order derivatives to the theory, instabil-

ity could be avoided with the help of the appropriate choice of the some functions.

Hence, infinite derivative gravity is a possible solution of resolving the ghost problem

and classical singularities. It does not generate ghosts.
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A particular form of IDG is free from the types of Ostragradsky instabilities, black

holes and cosmological type singularities [2–8].

Due to the very complicated form of the field equations of IDG, finding exact solu-

tions to the theory is undoubtedly a rather more difficult task. Nonetheless, remark-

able progress in finding exact solutions to the theory has recently been made in finding

shock and impulsive wave solutions of IDG [8, 9]. In these works, what mainly en-

ables to attain to find the exact solutions to those highly nonlinear and nonlocal field

equations is that the existing waves are described in the Kerr-Schild form, and in turn,

field equations reduce to a linear and non-local differential equation which then turns

into solvable forms. As a follow-up, other exact solutions of the theory have also

been found in [10, 11] 1. In this thesis, we have focused on the exact solutions of IDG

and followed the articles entitled "pp-waves as exact solutions to ghost-free infinite

derivative gravity" [8] and "infinite waves in ghost-free infinite derivative gravity in

Anti-de-Sitter space-time" [9].

In this chapter, I am going to introduce to some background information for IDG. I

am going to start with introducing some basic concepts of differential geometry and

tie this to the IDG and then give the motivation for IDG, propagators and Newtonian

potential. Also, to understand the other chapters, I am going to emphasize pp-waves

and AdS plane waves space-times. As a subsection, I am going to talk about the cur-

vature tensors of Kerr-Schild-Kundt class.

The second chapter will be aimed to find the exact solutions of the QG and IDG. To

get the explicit solutions, I am going to choose the special form factors that satisfy

ghost-freedom, which will be the same field equation that comes with the pp-wave

solutions of Einstein’s gravity. Also, one can see the solution of the shock wave in

IDG [7].

The third chapter is related to the chapter 2. The later sections include different con-

tent which are impulsive waves in 2+1 and 3+1 dimensions and their subsections [9].

The last chapter will about the conclusions.

1 Some exact solutions of IDG in the context of the cosmology were studied in [2, 7, 12] where a specific
assumption has been made on Ricci scalar.
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1.1 A Brief Information about Infinite Derivative Gravity (IDG)

1.1.1 Motivation for Infinite Derivative Gravity

The Ostrogradsky instability creates a ghost for the generic theory [2, 3, 13]. This

does not apply when infinite number of derivatives exist . These were first used in

string theory to avoid singularities and then applied to gravity.

The most general infinite derivative action in 4D, parity invariant, metric compatible

and torsion free action is [13–15]

S =
1

16πG

∫
d4x
√
−g
[
R + αc[RF1(�)R +RµνF2(�)Rµν + CµνρσF3(�)Cµνρσ]

]
,

(1.1)

with

Fi(�) =
∞∑
n=0

fin
�n

M2n
s

, (1.2)

where R is the Ricci scalar, Rµν is the Ricci tensor, Cµνρσ is the Weyl tensor and

G = 1
M2
p

is the Newton’s gravitational constant, αc = 1
M2
s

. f ’s are dimensionless

coefficients which play a crucial role to avoid ghost like instabilities, � = gµν∇µ∇ν

is the d’Alembertian operator. Each � term comes with the related M2
s which is a

new mass scale. We work with the (-, +, +, +) metric signature. Note that the Weyl

tensor vanishes precisely in a flat, or conformally flat background.

As αc −→ 0 or Ms −→ ∞, the theory reduces to Einstein’s gravity with a spin 2

graviton which is massless.

1.1.2 The Newtonian Potential

One can investigate the effect of IDG on the Newtonian potential, which is a simple

and important application. Even though this is a more difficult problem to solve in

IDG, the result will be better (does not diverge). The Newtonian limit means static

weak-field approximation. In other words, it can be described as weak fields for

which the sources are static.

We consider metric fluctuations around the Minkowski space-time [15],

gµν = ηµν + hµν |hµν | � 1. (1.3)
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The assumption that hµν is small enough allows us to ignore everything except the

first order. Hence, one can write an equation as,

gµν = ηµν − hµν , (1.4)

where hµν = ηµαηνρhαρ .

L =
√
−g

[
M2

p

2
R+

1

2
RF1(�)R+

1

2
RµνF2(�)Rµν +

1

2
CµνρσF3(�)Cµνρσ +Lmatter

]
(1.5)

which is the Lagrangian density, where Mp is the Planck mass, R is the scalar curva-

ture, Rµν is the Ricci tensor and the last one Cµνρσ is the Weyl tensor. One can see

that a, b, c, d and f are nonlinear functions of the derivative operators which reduce

in the limit to the constants values of a, b, c and d. The function f(�) occurs only in

higher or infinite derivative theories. Here, new relations are necessary,

a(�)RL
µν −

1

2
ηµνc(�)RL − 1

2
f(�)∂µ∂νR

L = κTµν , (1.6)

where L is the linearization as well as non-linear functions can be defined as,

a(�) = 1 +M−2
p (F2(�) + 2F3(�))�,

c(�) = 1−M−2
p (4F1(�) + F2(�)− 2

3
F3(�))�,

f(�) = M−2
p (4F1(�) + 2F2(�) +

4

3
F3(�)).

(1.7)

Hence, the field equations could be derived easily,

1

2
[a(�)(�hµν − ∂σ(∂µh

σ
ν + ∂νh

σ
µ)) + c(�)× (∂µ∂νh+ ηµν∂σ∂ρh

σρ − ηµν�h)

f(�)∂µ∂ν∂σ∂ρh
σρ] = −κTµν .

(1.8)

We are going to examine the scalar potentials in the non-local theories for short dis-

tances. Then, one can solve the linearized modified Einstein’s equations for a point

sources,

Tµν = ρδ0
µδ

0
ν = mδ3(~r)δ0

µδ
0
ν . (1.9)

Because the Newtonian potentials are static,

(a− 3c)�h+ (4c− 2a+ f)∂µ∂νh
µν = κρ, (1.10)

4



a�h00 + c�h− c∂µ∂νhµν = −κρ, (1.11)

For the static metric, the above equations are simplified as,

ds2 = −(1− 2φ)dt2 + (1 + 2ψ)dr2, (1.12)

where φ(r) and ψ(r) are potentials.

2(a− 3c)[∇2φ− 4∇2ψ] = κρ, (1.13)

2(c− a)∇2φ− 4c∇2ψ = −κρ. (1.14)

We are going to look at the functions c(�) and a(�), there are no ghosts and 1/r

divergence at short distances (UV). For the situation f = 0(a = c), the Newtonian

potentials can be solved ψ = φ. This choice ensures that the theory has not additional

degrees of freedom other than massless graviton.

4a(∇2)∇2φ = κρ = κmδ3(~r). (1.15)

Here ∇2 = ∂i∂
i is the Laplace operator. Now, we understand that to avoid the ghost

problem, a(�) will be an exponential of an entire function. Consider the following

functional dependence relation,

a(�) = e−
�
M2 . (1.16)

After doing some algebra, in order to reduce the graviton propagator to the GR which

is a special case a(�) = c(�), one can express the potential as [3],

φ(r) = ψ(r) = − km

(2π)2r

∫ ∞
0

dp

p

sin(pr)

a(−p2)
,

=
−km
(2π)2r

∫ ∞
0

dp

p
e−

p2

m2 sin(pr),

=
Gm

r
erf(

mr

2
),

(1.17)

where erf(r) is the error function given by the integral,

erf(r) =
2√
π

∫ r

0

e−p
2

dp. (1.18)
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Now, let us consider the small and large distance behaviours of Newtonian potential.

For the large distances as r → ∞, erf(r) → 1, and potential takes the following

form

φ(r) = −Gm
r

(1.19)

which reproduces the pure GR result. On the other hand, for the small distances, as

r → 0, erf(r)→ r, potential reduces to

φ(r) = −GmM√
π

. (1.20)

Observe that Newtonian potential is constant and hence potential is regular although

there is a dirac delta function type of singularity.

1.1.3 Propagators

One can realize that ghost like degrees of freedom could be still avoided if the deriva-

tive order is infinite.[16] By modifying the quadratic part of the action as e�/M2 ,

one can prevent the presence of the useless poles. The existence of non-polynomial

derivatives makes the action non-local, and this is used to deal with ultraviolet diver-

gences in the loop integrals. This is known as non-local or infinite derivative field

theories.

The propagator for IDG is [17],

Π(k2)IDG =
P (2)

(k2)a(−k2)
+

P
(0)
s

k2(a(−k2)− 3c(−k2))
, (1.21)

where

a(�̄) = 1 +M−2
p (F2(�̄) + 2F3(�̄))�̄, (1.22)

c(�̄) = 1 +M−2
p (−4F1(�̄)− F2(�̄) +

2

3
F3(�̄))�̄, (1.23)

� −→ −k2 = −kµkµ. (1.24)

I want to show that there are no ghosts, which are generated because of the negative

residues in the propagator. Hence, we can set the simplest choice [18],

a(−k2) = c(−k2) = eγ(−k2). (1.25)

6



No extra scalar degrees of freedom. This equation ensures that the theory has not got

an additional degrees of freedom other than massless spin -2 graviton.

Then, the IDG propagator simplifies as [13]

Π(k2)IDG =
1

a(−k2)

(P (2)

k2
− P

(0)
s

2k2

)
=

1

a(−k2)
. (1.26)

where operators P (2) and P (0)
s are Barnes-Rivers spin projection operators. The most

important point is to avoid ghost-like instabilities which means that the propagator

does not have any extra degrees of freedom. a(k2) could be chosen to be an exponen-

tial function as a(k2) = eγ( k
2

M2 ). This choice tells us that the propagator has no poles

that are additional unlike massless graviton.

1.2 PP-Wave Spacetimes

One can consider the pp-wave metric described by Kerr-Schild form ( gµν = ηµν +

fkµkν) [19–21]

gµν = ηµν + 2Hλµλν , (1.27)

where ηµν is the flat (Minkowski) metric and covariantly constant null vector λµ sat-

isfies,

λµλµ = 0, ∇µλν = 0, (1.28)

λµ∂µH = 0. (1.29)

The null vector is non-expanding, non-twisting and shear-free. To find the pp wave

solution of higher derivative gravity theory, I am going to calculate the Riemann,

Ricci and scalar curvature after finding Christoffel connection. I am going to start

with using the general equation of Christoffel connection,

Γσµν =
1

2
gσλ(∂µgλν + ∂νgµλ − ∂λgµν). (1.30)

Let us use (1.27) and inverse of this equation to obtain the Christoffel connection, and

then substituting these into the general form of Christoffel connection, one get

Γσµν =
1

2
(ησλ − 2Hλσλλ)[2∂µ(Hλλλν) + 2∂ν(Hλµλλ)− 2∂λ(Hλµλν)]

= ησλ(λλλν∂µH + λµλλ∂νH − λµλν∂λH)

+ησλH[∂µ(λλλν) + ∂ν(λµλν)− ∂λ(λµλν)] +O(H2),

(1.31)

7



and one can simplify the connection equation by using the covariant derivative of

these,

∇µ(λλλν) = ∂µ(λλλν)− Γσµλλσλν − Γσµνλλλσ = 0, (1.32)

∇ν(λµλλ) = ∂ν(λµλλ)− Γσνµλσλλ − Γσνλλµλσ = 0, (1.33)

∇λ(λµλν) = ∂λ(λµλν)− Γσλµλσλν − Γσλνλµλσ = 0. (1.34)

By the help of these calculation, the result can be written as

Γσµν = ησλ(λλλν∂µH + λµλλ∂νH − λµλν∂λH),

= (λσλν∂µH + λσλµ∂νH − λµλνησβ∂βH), (1.35)

which satisfies λσΓσµν = 0 and λµΓσµν = 0.

One can show that these two equations are satisfied.

The first one is,

λσΓσµν =

nullvector︷ ︸︸ ︷
λσλ

σ λµ∂νH +

nullvector︷ ︸︸ ︷
λσλ

σ λν∂µH − λµλν

λβ∂βH=0︷ ︸︸ ︷
λση

σβ∂βH = 0. (1.36)

Second one is,

λµΓσµν =

nullvector︷ ︸︸ ︷
λµλσ λµ∂νH +

=0︷ ︸︸ ︷
λµ∂µH λσλν −

nullvector︷ ︸︸ ︷
λµλµ λνη

σβ∂βH = 0. (1.37)

After these calculations, one can find the necessary terms, the general form of the

Riemann tensor as

Rρσµν =
∂Γσνρ
∂xµ

− ∂Γσνρ
∂xν

+ ΓρνδΓ
δ
σµ − ΓρµδΓ

δ
σµ. (1.38)

One gets the Riemann tensor by using the equations (1.27) and (1.35),

Rρσµν = (ηρλ + 2Hλρλλ)(∂µΓλνσ − ∂νΓλµσ)

(ηρλ + 2Hλρλλ)[∂µ(λλλν∂σH + λλλσ∂νH − λνλσηλβ∂βH)− ∂ν(λλλµ∂σH

+λλλσ∂µH − λµλσηλβ∂βH)]

= λρλν∂µ∂σH + λρλσ∂µ∂νH − λνλσηβρ∂β∂µH − λρλµ∂ν∂σH − λρλσ∂µ∂νH

+λµλση
β
ρ∂β∂νH.

(1.39)
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Finally, the Riemann tensor can be found as,

Rρσµν = λρλν∂σ∂µH + λσλµ∂ρ∂νH − λρλµ∂σ∂νH − λσλν∂ρ∂µH. (1.40)

The second necessary tensor is the Ricci tensor and to obtain this one I am going to

introduce a new equation,

Rσν = ηρµRρσµν . (1.41)

Hence, the Ricci tensor is

Rµν = −λµλν∂2H. (1.42)

where ∂2 = ηµν∂µ∂ν . The scalar curvature is zero for the metric of the equation

(1.27).

The last one is the Weyl (or Conformal) tensor. The general form of Weyl tensor can

be found as

Cρσµν = Rρσµν +
(gρνRµσ + gσµRνρ − gρµRνσ − gσνRµρ)

(n− 2)
+

(gρµgµσ − gρνgµσ)R

(n− 1)(n− 2)

= λρλν∂σ∂µH + λσλµ∂ρ∂νH − λρλµ∂σ∂νH − λσλν∂ρ∂µH

−1

2
(ηρνλµλσ + ησµλνλρ − ηρµλνλσ − ησνλµλρ)∂2H

(1.43)

The traceless part of the Riemann tensor is the Weyl tensor. Additionally, any con-

traction with λµ vector yields zero.

λµCρσµν = 0, λµRρσµν = 0, λµRµν = 0 (1.44)

Two tensors can be represented as,

[Rn0(∇n1R)(∇n2R).......(∇nkR)]µν (1.45)

where 5niRi represents the (0, ni + 4) rank tensor and it builds from the Riemann

tensor. The general form of two tensors composed of a linear combination ofRµν and

�nRµν which is an important property. I will give a proof for this property.

For the first part is that λ being a vector cannot make a nonzero contraction. Hence,

two features are remarkable to understand,

λµ∂µH = 0, (1.46)

∇νλ
µ = 0. (1.47)
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This equation implies that λ is covariantly constant. Hence, λ contraction with ∇2H

is zero.

λµ∇ν∂µH = 0. (1.48)

One can see that λ contraction with ∇2H and other λ’s (null vector) are also zero.

After this part, the contraction λ vector with∇nH’s reduces to a lower order terms,

λµj∇µ1∇µ2 ...∇µj ...∇µnH = ∇µ1(λµj∇µ2 ...∇µj ...∇µnH), (1.49)

which is the first step and then,

λµj∇µ1∇µ2 ...∇µj ...∇µnH = λµj∇µ2∇µ1 ...∇µj ...∇µnH. (1.50)

This is the last part that the λ cannot make a nonzero contraction.

The only nonzero part,

∇µ1∇µ2 ...∇µ2n−2∇α∇βRµανβ = ∇µ1∇µ2 ...∇µ2n−2�Rµν , (1.51)

where we have used the Bianchi identity on the Riemann tensor for the pp wave metric

defined as [19]

[∇2nR]µν = �nRµν . (1.52)

1.3 AdS-Plane Wave Spacetimes

AdS plane-waves are a special kind of gravitational waves propagating along AdS-

space[22].

D- dimensional metric in Kerr-Schild form given as

gµν = ḡµν + 2Hλµλν , (1.53)

and the inverse metric given as

gµν = ḡµν − 2Hλµλν , (1.54)

which is an exact form. Let us note that the similarity with a perturbation where the

metric perturbation is defined as hµν = gµν − ḡµν and at the linearized level, the

10



inverse metric becomes gµν = ḡµν − hµν . Here, ḡµν is the AdS metric. Additionally,

the following relations are satisfied

λµλµ = 0,

∇µλν = ξ(µλν ),

ξµλ
µ = 0,

λµ∂µH = 0.

(1.55)

Hence, the Kerr-Schild metric is a member of Kundt class

ξµ∇µλν = ξµ∇νλµ =
1

2
λνξ

µξµ, (1.56)

and

∇̄ν(ξµλµ) = 0
symmetric︷︸︸︷−→ λµ∇̄νξµ

antisymmetric︷︸︸︷
= −ξµ∇̄νλ

µ. (1.57)

To reach the equation (1.56), one should think about the theorem and its proof, i.e.;

λµj(
n−1∏
i=1

∇µi)ξµn (1.58)

is reducible. We are going to show how to prove this identity

∇µλν = ξ(µλν ) (1.59)

ξ satisfies the identities,

λµ1∇µ1ξµ2 = −λµ2(
1

4
ξµ1ξµ1 −

R

12
), (1.60)

and

λµ2∇µ1ξµ2 = −1

2
λµ1ξ

µ2ξµ2 . (1.61)

The Christoffel connection of the metric is

Γ̄µαβ = Γµαβ − Ωµ
αβ, (1.62)

Ωµ
αβ which is the background metric of the Christoffel connection ḡµν .

Ωµ
αβ = ∇̄α(Hλµλβ) + ∇̄β(Hλµλα)− ∇̄µ(Hλαλβ). (1.63)

One can also easily show that Ωµ
αβ satisfies the properties,

Ωµ
µβ = ∇̄µ(Hλµλβ) + ∇̄β(H

=0︷ ︸︸ ︷
λµλµ)− ∇̄µ(Hλµλβ) = 0, (1.64)
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λµΩµ
αβ =

=0︷ ︸︸ ︷
λµλ

µ ∇̄αHλβ +

=0︷ ︸︸ ︷
λµλ

µ ∇̄βHλα − ∇̄µλµHλαλβ = 0, (1.65)

λαΩµ
αβ =

=0︷ ︸︸ ︷
∇̄αλ

αλβHλ
µ + ∇̄βHλ

µ

=0︷ ︸︸ ︷
λαλα−∇̄µH

=0︷ ︸︸ ︷
λαλ

α λβ = 0. (1.66)

And thus, the covariant derivative of λµ reduces to the covariant derivative with re-

spect to the background AdS metric,

∇̄µλρ = ∇µλρ. (1.67)

Using the Ricci identity in the form

[∇̄µ, ∇̄ν ]λ
µ = R̄νσλ

σ, (1.68)

with

∇̄µλ
µ = 0, (1.69)

(∇̄µ∇̄ν − ∇̄ν∇̄µ)λµ = − 3

l2
ḡνσλ

σ = − 3

l2
λν . (1.70)

The first one of the left hand side comes from equation (2.28) and the second one

comes from equation (1.69) as zero. Hence, we can reach the final part,

�̄λν = − 3

l2
λν . (1.71)

I will show how to solve this last equation,

�̄λν = ∇̄σ∇̄σλν = ∇̄σ∇̄νλσ = [∇̄σ, ∇̄ν ]λσ = R̄σ
νσ
ρλρ. (1.72)

Also, the left hand side yields a new equation,

λµ∇̄µξν = −λν [∇̄µξ
µ +

1

2
ξµξµ +

6

l2
]. (1.73)

To obtain the curvature tensor, we are going to find the Ωµ
αβ part of the Christoffel

connection which is linear in H ,

Ωµ
αβ = −λαλβ∂µH + 2Hλµλ(α∂β) + 2Hλµλ(αξβ) (1.74)
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The contraction of the vector ξµ with Ωµ
αβ gives,

ξµΩµ
αβ = −ξµλαλβ∂µH + 2

0︷︸︸︷
ξµλ

µ λ(α∂β)H + 2

0︷︸︸︷
ξµλ

µ λ(αξβ)H

ξµΩµ
αβ = −ξµλαλβ∂µH.

(1.75)

Also,

ξαΩµ
αβ = −

0︷︸︸︷
ξαλα λβ∂

µH + 2ξαλ
µλ(α∂β)H + 2ξαλµλ(αξβ)H. (1.76)

The second part of the equation (1.76) gives λµλβξα∂αH .

Finally, for the last part of the equation, the result will be λµλβξαξαH . Hence, the

solution can be reachable,

ξµΩµ
αβ = λµλβ(ξα∂αH + ξαξαH). (1.77)

Therefore, we can see that the equations are not equal (∇µξρ 6= ∇̄µξρ)

λµ∂µH = 0. (1.78)

Also, the Kerr-Schild metric satisfies.

∇̄µλ
µλβ = 0, (1.79)

which is the geodesic equation.

λµ∇̄µλβ = 0. (1.80)

By using the following identity, we are going to find the Ricci tensor,

∇̄µ∇̄α(Hλµλβ) = [∇̄µ, ∇̄α]Hλµλβ + ∇̄α∇̄µ(Hλµλβ) (1.81)

By using equation (1.68), one can get a new form

∇̄µ∇̄α(Hλµλβ) = R̄ασHλ
σλβ+R̄σ

µαβHλ
µλσ+∇̄α(λµ∂µHλβ+H∇̄µλ

µλβ+Hλµ∇̄µλβ).

(1.82)

With the help of the equations (1.78), (1.79), (1.80), one can write

∇̄µ∇̄α(Hλµλβ) = R̄ασHλ
σλβ + R̄σ

µαβHλ
µλσ. (1.83)

Hence, by using R̄µ
ανβ = − 1

l2
(δνµḡαβ − δµβ ḡαν), one can reach a new form of the

equation (1.81),

R̄ασHλ
σλβ −

1

l2
Hλµλσ(δσαḡµβ − δσµ ḡαβ). (1.84)
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The second part of the last equation comes as zero,

∇̄µ∇̄α(Hλµλβ) = − 4

l2
Hλαλβ. (1.85)

Ricci tensor is,

Rρ
β = R̄ρ

β − 2HλρλαR̄αβ + ḡρα∇̄µΩµ
αβ, (1.86)

Ωµ
αβ = ∇̄α(Hλµλβ) + ∇̄β(Hλµλα)− ∇̄µ(Hλαλβ), (1.87)

∇̄µΩµ
αβ = ∇̄µ∇̄α(Hλµλβ) + ∇̄µ∇̄β(Hλµλα)− �̄(Hλαλβ). (1.88)

By using equation (1.85) one can find,

∇̄µΩµ
αβ = − 4

l2
Hλαλβ −

4

l2
Hλβλα − �̄(Hλαλβ). (1.89)

Rρ
β = R̄ρ

β − 2HλρλαR̄αβ + ḡρα(− 8

l2
Hλαλβ − �̄(Hλαλβ))

= R̄ρ
β − 2HλρλαR̄αβ + (− 8

l2
Hλρλβ − ḡρα(�̄(Hλαλβ))

= R̄ρ
β +

6

l2
Hλρλβ −

8

l2
Hλρλβ − (ρ− 2

l2
H)λρλβ,

Rρ
β = R̄ρ

β + ρλρλβ,

(1.90)

where

R̄αβ = − 3

l2
ḡαβ, (1.91)

�̄(Hλαλβ) = (−ρ− 2

l2
H)λαλβ, (1.92)

and

Rρβ = − 3

l2
gρβ + ρλρλβ. (1.93)

Now, I am going to show how to prove the equation (1.92),

�̄(Hλαλβ) = ∇̄µ(∇̄µHλαλβ +H∇̄µλαλβ +Hλα∇̄µλβ),

�̄(Hλαλβ) = Hλα�̄λβ +Hλβ�̄λα + �̄Hλαλβ +H∇̄µλα∇̄µλβ +H∇̄µλα∇̄µλβ

+2∂µH(λβ∇̄µλα + λα∇̄µλβ),

�̄(Hλαλβ) = − 6

l2
Hλαλβ + λαλβ(

H

2
ξµξµ + 2ξµ∂

µH) + λαλβ�̄H,

=
(
− ρ− 2

l2
H
)
λαλβ,

(1.94)

14



where

ρ = −
(
2ξµ∂

µH +
H

2
ξµξµ + �̄H − 4

l2
H
)

(1.95)

The Riemann tensor has the form,

Rµ
ανβ = R̄µ

ανβ + ∇̄νΩ
µ
αβ − ∇̄βΩµ

αν + Ωµ
νσΩσ

βα − Ωµ
βσΩσ

να, (1.96)

where R̄µ
ανβ is the Riemann tensor of AdS space-time which can be expressed as

R̄µ
ανβ = − 1

l2
(δµν ḡαβ − δ

µ
β ḡαν). (1.97)

The contraction of the Riemann tensor with two λµ vectors has the form,

λµλ
νRµ

ανβ = λµλ
νR̄µ

ανβ, (1.98)

λµλ
ν(− 1

l2
δµν ḡαβ +

1

l2
δµβ ḡαν)

= − 1

l2

=0︷︸︸︷
λνλ

ν ḡαβ +
1

l2

λαλβ︷ ︸︸ ︷
λβλ

ν ḡαν =
1

l2
λαλβ.

(1.99)

Also,

λαλνR
µ
ανβ = λαλνR̄µ

ανβ = − 1

l2
λµλβ, (1.100)

λαλν(− 1

l2
δµνḡαβ +

1

l2
δµβ ḡαν),

= − 1

l2
λαλµḡαβ = − 1

l2
λβλ

µ.
(1.101)

The scalar curvature of Kerr-Schild metrics is a constant having a value and normal-

ized as

R̄ = R = −12

l2
. (1.102)

This might be known that the AdS-wave and spherical-AdS-wave metrics belong to

the class of Kerr-Schild-Kundt.

In addition, the trace-free Ricci tensor is,

Sµν ≡ Rµν −
R

4
gµν . (1.103)

One can write this as,

S = ρλµλν . (1.104)

by defining ρ as in (1.95).
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Then, the Riemann tensor can be written as

Rµανβ = Cµανβ + (gµ[νSβ ]α − gα[νSβ ]ν) +
R

6
gµ[νgβ ]α. (1.105)

Lots of properties introduced here will be rediscussed extensively in Appendix A3.
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CHAPTER 2

PP-WAVE SOLUTIONS TO HIGHER DERIVATIVE GRAVITY

2.1 Quadratic Gravity

In this section we study the exact pp-waves solutions of quadratic gravity theory [19,

23, 24] 1. The action of quadratic gravity is given as

I =

∫
d4x
√
−g
[1

κ
(R− 2Λ0) + αR2 + βR2

µν + γ(R2
µνρσ − 4R2

µν +R2)
]

(2.1)

The source free field equations are [25, 26].

1

κ
(Rµν −

1

2
gµνR + Λ0gµν) + 2αR(Rµν −

1

4
gµνR) + (2α + β)(gµν�−∇µ∇ν)R

+β�(Rµν −
1

2
gµνR) + 2β(Rµσνρ −

1

4
gµνRσρ)R

σρ + 2γ[RRµν − 2RµσνρR
σρ

RµσρτR
σρτ − 2RµσR

σ
ν −

1

4
(gµνR

2
τλσρ − 4R2

σρ +R2)] = 0

(2.2)

To find pp-wave solutions of the theory, let us consider the field equations of quadratic

gravity for the pp-wave metric.

1

κ
[−λµλν∂2H − 1

2
(ηµν + 2Hλµλν)

=0︷︸︸︷
R +

=0︷︸︸︷
Λ0 (ηµν + 2Hλµλν)] + 2α

=0︷︸︸︷
R [−λµλν∂2H − 1

4
(ηµν + 2Hλµλν)

=0︷︸︸︷
R ] + (2α + β)[(ηµν + 2Hλµλν)�−∇µ∇ν ]

=0︷︸︸︷
R

+β�[(−λµλν∂2H)− 1

2
(ηµν + 2Hλµλν)

=0︷︸︸︷
R ] + 2β(Rµσνρ −

1

4
gµνRσρ)R

σρ

+2γ[

=0︷︸︸︷
R (−λµλν∂2H)− 2

=0︷ ︸︸ ︷
RµσνρR

σρ +

=0︷ ︸︸ ︷
RµσρτRν

σρτ −2

=0︷ ︸︸ ︷
RµσR

σ
ν

−1

4
gµν(R

2
τλσρ − 4

=0︷︸︸︷
R2
σρ +

=0︷︸︸︷
R2 )]

(2.3)
1 In this section, for the details on the quadratic gravity, see [24]
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Now, let us compute each term in the field equations by using the relations which are

given in the sec.1.2.

1.

(Rµσνρ −
1

4
gµνRσρ)R

σρ =

a︷ ︸︸ ︷
RµσνρR

σρ−1

4
gµν

b︷ ︸︸ ︷
RσρR

σρ . (2.4)

(a) RµσνρR
σρ = 0 since Rσρ

αλ
σλρ −→ λσλρRµσνρ = 0,

(b) RσρR
σρ = 0 because Rσρ ∝ λσλρ and Rσρ ∝ λσλρ. Hence, by using

equation (1.28), the answer comes zero. (λσλσ = 0, λρλρ = 0).

2. RµσR
σ
ν = (λµλσ∂

2H)(−λσλν∂2H) = 0 since λ is a null vector.

3. By using equation ,RµσρτRν
σρτ = 0 One can show this by using the properties

(1.28) and (1.29).

RµσρτRν
σρτ = [(λµλτ∂σ∂ρH + λσλρ∂µ∂τH − λµλρ∂σ∂τH − λσλτ∂µ∂ρH)

(λνλ
τ∂σ∂ρH + λσλρ∂ν∂

τH − λνλρ∂σ∂τH − λσλτ∂ν∂ρH)]

=

=0︷︸︸︷
λτλτ ∂σ∂ρHλνλµ∂

σ∂ρH +

=0︷ ︸︸ ︷
λσ∂σH λµλτ∂ρλ

ρ∂ν∂
τH −

=0︷ ︸︸ ︷
λρ∂ρH λµλτ∂σλν∂

σ∂τH

−
=0︷︸︸︷
λτλτ ∂σ∂ρHλ

σλµ∂ν∂
ρH +

=0︷ ︸︸ ︷
λτ∂τH λσλρ∂µλν∂

σ∂ρH +

=0︷ ︸︸ ︷
λσλ

σ λρ∂µ∂τHλ
ρ∂ν∂

τH

−
=0︷︸︸︷
λρλρ ∂µ∂τHλνλσ∂

σ∂τH −
=0︷ ︸︸ ︷
λσλ

σ λρ∂µ∂τHλ
τ∂ν∂

ρH −
=0︷ ︸︸ ︷

λτ∂τH λµλρ∂σλν∂
σ∂ρH

−
=0︷︸︸︷
λρλρ ∂σ∂τHλ

σλµ∂ν∂
τH +

=0︷︸︸︷
λρλρ ∂σ∂τHλνλµ∂

σ∂τH +

=0︷ ︸︸ ︷
λσ∂σH λµλρ∂τHλ

τ∂ν∂
ρ

−
=0︷︸︸︷
λτλτ λσ∂µ∂ρHλν∂

σ∂ρH −
=0︷ ︸︸ ︷
λσλ

σ λτ∂µ∂ρHλ
ρ∂ν∂

τH +

=0︷ ︸︸ ︷
λρ∂ρH λσλτ∂µλν∂

σ∂τH

+

=0︷ ︸︸ ︷
λσλ

σ λτ∂µ∂ρHλ
τ∂ν∂

ρH = 0,

(2.5)

Then, we have,

RτλσρR
τλσρ = (λτλρ∂λ∂σH + λλλσ∂τ∂ρH − λτλσ∂λ∂ρH − λλλρ∂τ∂σH)

(λτλρ∂λ∂σH + λλλσ∂τ∂ρH − λτλσ∂λ∂ρH − λλλρ∂τ∂σH) = 0.

(2.6)

Field equations can be obtained as

(β�̄ +
1

κ
)Rµν = 0. (2.7)
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A pp-wave metric that solves Rµν = 0 is a solution of the last equation. Additionally,

Rµν = 0 is a vacuum field equation.

By using the definition of Ricci tensor for pp-wave spacetimes, field equations can be

written as

(� +
1

βκ
)∂2H = 0. (2.8)

where ∂2 = 2 ∂2

∂u∂v
+ ∂̂2 and takes the following form,

(∂̂2 −m2
β)∂̂2H = 0 (2.9)

where m2
β = − 1

βκ
is the mass of the spin-2 excitation.

To find the explicit pp-wave solutions of the quadratic gravity theory, let us consider

the pp-wave metric in null coordinates as

ds2 = 2dudv + 2H(u, x, y)dv2 + dx2 + dy2. (2.10)

�H = gµν∇µ∇νH = (ηµν − 2λµλνH)(∇µ∇νH)

= ηµν∂µ∂νH − ηµνΓσµν∂σH.
(2.11)

where u = 1√
2
(x− t) and v = 1√

2
(x+ t) that are light cone background coordinates.

Covariant vector λµ = δuµ yields a contravariant vector as λµ = δµv . Then, one can

obtain,

λµdx
µ = δuµdx

µ = du, λµ∂µH = δµν ∂µH = ∂vH = 0. (2.12)

By using, equation (2.12) and Laplacian for the metric as ∂2 = 2 ∂2

∂u∂v
+ ∂2

⊥, ∂2
⊥ =

∂2
x + ∂2

y . Also, (2.8) takes the following form [19],

(∂2
⊥ −m2

β)∂2
⊥H = 0. (2.13)
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2.2 Infinite Derivative Gravity

PP-wave space-times are exact solutions of the IDG. We also represent that these

waves solve not only non-linear field equations but also the linearized field equations.

Now, we will briefly review the IDG. Also, we will give some basic concepts of the

pp-wave space-times and represent that these space-times are exact solution of the

theory.

2.2.1 The Field Equations of IDG

The most general infinite derivative action in four dimension, around constant cur-

vature backgrounds, parity-invariant, metric-compatible and torsion-free can be ex-

pressed as [1–3]

S =
1

16πG

∫
d4x
√
−g
[
R+αc(R F1(�)R+RµνF2(�)Rµν +CµνρσF3(�)Cµνρσ)

]
.

(2.14)

with

Fi(�) =
∞∑
n=0

fin
�n

M2n
s

(2.15)

where � = gµν∇µ∇ν . Fi(�) contains infinite derivative functions, fin is a dimen-

sionless coefficients and avoid ghost-like instabilities. In the limit αc −→ 0, theory

reduces to Einstein’s gravity with a massless spin 2 graviton. Also, each � term

comes with mass scale M2 where M < Mp = [16πG]−
1
2 .

The source-free field equations are [4]

Gαβ +
αc
2

[4Gαβ F1(�) R + gαβ R F1(�) R− 4 (∇α∇β − gαβ�) F1 (�) R

+4Rα
ν F2(�) Rνβ − gαβ Rν

µF2(�) Rµ
ν − 4 ∇ν∇β (F2(�) Rνα) + 2�(F2(�) Rαβ)

+2 gαβ∇µ∇ν (F2(�) Rµν)− gαβ Cµνρσ F3(�) Cµνρσ + 4Cα
µνσ F3(�) Cβµνσ

−4 (Rµν + 2∇µ∇ν) (F3(�) Cβµνα) − 2 Ωαβ
1 + gαβ (Ωρ

1ρ + Ω̄1)− 2 Ωαβ
2

+gαβ(Ωρ
2ρ + Ω̄2)− 4∆αβ

2 − 2 Ωαβ
3 + gαβ (Ωγ

3γ + Ω̄3)− 8 ∆αβ
3 ] = 0.

(2.16)
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Here, the symmetric tensors are given as,

Ωαβ
1 =

∞∑
n=1

f1n

n−1∑
l=0

∇αRl∇βR(n−l−1), Ω̄1 =
∞∑
n=1

f1n

n−1∑
l=0

RlR(n−l),

Ωαβ
2 =

∞∑
n=1

f2nR
µ;α(l)
ν Rν;β(n−l−1)

µ , Ω̄2 =
∞∑
n=1

f2n

n−1∑
l=0

Rµ(l)
ν Rν(n−l)

µ ,

4αβ
2 =

1

2

∞∑
n=1

f2n

n−1∑
l=0

[Rν(l)
σ R(β|σ|;α)(n−l−1) −Rν;(α(l)

σ Rβ)σ(n−l−1)];ν ,

Ωαβ
3 =

1

2

∞∑
n−1

f3n

n−1∑
l=0

C
µ;α(l)
νλσ Cνλσ;β(n−l−1)

µ , Ω̄3 =
∞∑
n=1

f3n

n−1∑
l=0

C
µ(l)
νλσC

νλσ(n−l)
µ ,

4αβ
3 =

1

2

∞∑
n=1

f3n

n−1∑
l=0

[Cλν(l)
σµ C

(β|σµ|;α)(n−l−1)
λ − Cλν

σµ
;(α(l)C

β)σµ(n−l−1)
λ ];ν .

(2.17)

Now, let us express the field equations for the pp-wave space-times. Hence, the field

equations for the pp-wave space-times take the following form,

Gαβ + αc
2

1︷ ︸︸ ︷
[4Rα

ν

∞∑
n=0

f2n

�n

M2n
(−λνλβ∂2H)−

2︷ ︸︸ ︷
gαβRν

µ
∞∑
n=0

f2n

�n

M2n
Rµ

ν −4

3︷ ︸︸ ︷
∇ν∇β

∞∑
n=0

f2n

�n

M2n
(−λνλα∂2H)

+2

4︷ ︸︸ ︷
�
∞∑
n=0

f2n

�n

M2n
(−λαλβ∂2H) +2

5︷ ︸︸ ︷
gαβ∇µ∇ν

∞∑
n=0

f2n

�n

M2n
(−λµλν∂2H)−

6︷ ︸︸ ︷
gαβCµνρσ(

∞∑
n=0

f3n

�n

M2n
)Cµνρσ

+

12︷ ︸︸ ︷
∞∑
n=1

f2n

n−1∑
l=0

Rν
µ(l)Rµ

ν(n−l))−2

13︷ ︸︸ ︷
(+

∞∑
n=1

f2n

n−1∑
l=0

[Rσ
ν(l)R(β|σ|;α)(n−l−1) −Rν;(α(l)

σ Rβ)σ(n−l−1)]; ν

−2

14︷ ︸︸ ︷
∞∑
n=1

f3n

n−1∑
l=0

Cµ;α(l)
νρσ Cµ

νρσ;β(n−l−1) +

15︷ ︸︸ ︷
gαβ(Ωγ

3γ +
∞∑
n=1

f3n

n−1∑
l=0

Cµ(l)
νρσC

νρσ(n−l)
µ )

−4

16︷ ︸︸ ︷
∞∑
n=1

f3n

n−1∑
l=0

[Cρν(l)
σµCρ

(β|σµ|;α)(n−l−1) − Cρν
σµ

;(α(l)Cβ)σµ(n−l−1)
ρ ; ν] = 0

(2.18)

where we used the fact that R = 0. Recall that the Weyl tensor for the pp-wave

space-times can be described as

Cµνρσ = (λµλσ∂ν∂ρH + λνλρ∂µ∂σH − λµλρ∂ν∂ρH − λνλσ∂µ∂ρH

−1

2
(ηµσλρλν + ηνρλσλµ − ηµρλσλν − ηνσλρλµ)∂2H.

(2.19)

Let us give as an example, calculations of the some parts,

Gαβ = Rαβ − 1

2
gαβR = Rαβ, (2.20)
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where R = 0.

(1) −→ Rα
νF2(�)Rνβ = Rα

νλ
νλβ

∞∑
n=0

f2n

�n

M2n
(−∂2H) = 0,

where

λνRαν = 0,

(2) −→ gαβRν
µ
∞∑
n=0

f2n

�n

M2n
Rµ

ν = gαβ(−λνλµ∂2H)
∞∑
n=0

f2n

�n

M2n
(−λµλν∂2H) = 0,

By using λµλµ = 0.

(3) −→ ∇ν∇β

∞∑
n=0

f2n

�n

M2n
(−λνλα∂2H) = 0.

By using a property which is∇µλν = 0.

(4) −→ 2�(F2(�)Rαβ) = 2�
∑∞

n=0 f2n
�n

M2n (−λαλβ∂2H).

(5) −→ by using a property which is∇µλν = 0.

(6), (7) −→ By using λµλµ = 0. This property is satisfied by Weyl tensor.

(8) −→ (Rµν+2∇µ∇ν)(F3(�)Cβµνα) = (−λµλν∂2H)F3(�)Cβµνα+2∇µ∇νF3(�)Cβµνα

= −

=0︷ ︸︸ ︷
λµλν

∞∑
n=0

f3n

�n

M2n
Cβµνα +F3(�)∇µ∇ν

−Cµβνα︷ ︸︸ ︷
Cβµνα = −1

2
F3(�)�Rαβ

where we used the following relation

∇α∇βC
βµαν =

1

2
�Rµν (2.21)

The second part of (8) is∇µ∇νF3(�)Cβµνα.

(9), (10) −→ Ωαβ
1 = Ω̄1 = 0 because R=0.

(12) −→ Ω̄2 =
∑∞

n=1 f2n

∑n−1
l=0 Rν

µ(l)Rµ
ν(n−l) =

∑∞
n=1 f2n

∑n−1
l=0 �lRν

µ�n−lRµ
ν
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=
∑∞

n=1 f2n

∑n−1
l=0 �l(−λνλµ∂2H)�n−l(−λµλν∂2H) = 0,

Now, one can see that the field equations take a new form,

[Rαβ + αc(�F2(�)Rαβ + 2F3(�)�Rαβ]

= [1 + αc(�F2(�) + 2F3(�)�)]Rαβ = 0.
(2.22)

It is easy to see the field equations in this form,

[1 + αc(�F2(�) + 2F3(�)�)]Rµν = 0. (2.23)

By using Ricci tensor definition, the field equations can be rearranged as

[1 + αc(�F2(�) + 2F3(�)�)]∂2H = 0. (2.24)

Form factors in the equation (2.24) can be described as

F2(�) =
∞∑
n=0

f2n

�n

M2n
, F3(�) =

∞∑
n=0

f3n

�n

M2n
. (2.25)

Consider the box operator on acting on H to get �nH . By using equation (2.11), one

can arrange �H as,

�H = gµν∇µ∇νH = ηµν∂µ∂νH − ηµνΓσµν∂σH (2.26)

One can show that the second terms in (2.26) will vanish,

ηµν [λσλµ∂νH+λσλν∂µH−λµλνησβ∂βH] = λσ
=0︷ ︸︸ ︷

λν∂νH +λσ
=0︷ ︸︸ ︷

λµ∂µH −
=0︷︸︸︷
λνλν η

σβ∂βH = 0

(2.27)

where λνλν = 0 and λµ∂µH = 0. Then, the equation (2.26) can be written as

�H = ∂2H, (2.28)

To reduce the field equations of IDG (2.24), one can prove that �n∂2H = ∂2n(∂2H),

�n∂2H = �n(∂2H) = ∂2

∂2nH︷ ︸︸ ︷
(�nH) = ∂2n(∂2H). (2.29)

Hence, the field equations of IDG takes the form [8],

[1 + αc(∂
2F2(∂2) + 2∂2F3(∂2))]∂2H = 0. (2.30)
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2.3 PP-Wave Solutions

In this section , we will construct the exact pp-wave solutions of infinite derivative

gravity [8]. One can show this,

�H = ∂2H = (2
∂2

∂u∂v
+ ∂2

⊥)H = 2
∂2H

∂u∂v
+ ∂2

⊥H = ∂2
⊥H, (2.31)

where ∂vH = 0. Hence, the equation (2.30) takes the form,

[1 + αc(∂
2
⊥F2(∂2

⊥) + 2∂2
⊥F3(∂2

⊥))]∂2
⊥H = 0, (2.32)

Form factors can be chosen as [2, 3],

F2(�) =
−1 + e−

�
M2

�
M2

, F3(�) = 0. (2.33)

With the choice, theory has no ghosts or extra degrees of freedom other than massless

spin-2 degrees of freedom. The corresponding field equation (2.32) can be found,

(
1 + αc

[
∂2
⊥(
−1 + e−

�
M2

∂2
⊥

M2

)
])
∂2
⊥H = 0,(

1 + αc

[
(
−1 + e−

�
M2

1
M2

)
])
∂2
⊥H = 0(

1− αcM2 + αc
(
e−

∂2
⊥
M2
)
M2

)
∂2
⊥H = 0,

e−
∂2
⊥
M2 ∂2

⊥H = 0,

(2.34)

where αc = 1
M2 .

Equation could be solved by using the new method which is known as eigenvalue-

method [27],

∂2
⊥H = −α2H, (2.35)

where H are eigenfunctions and α are eigenvalues. To reach the last field equations’

form, acting on H ,

e−
∂2
⊥
M2 ∂2

⊥H = e
α2

M2α2∂2
⊥H. (2.36)

One can see that the equation reduces to new form,

∂2
⊥V = 0. (2.37)
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Solutions of the source free theory are same with the Einstein’s GR. To see the other

effects and different solutions, one can consider the field equations in the presence of

a source.

2.3.1 Shock Wave Solution of IDG

In this part, we are going to examine the PP-wave solutions in the existence of the ra-

diation sources [8] 2. Gravitational shock-wave solution will explain the gravitational

interactions between high energy massless particles in IDG. Shock waves’ metric

produced by a moving massless point particle can be written as follows,

ds2 = −dudv + δ(u)g(x⊥)du2 + dx2
⊥, (2.38)

where u = t−z and v = t+z are the transverse coordinates to wave propagation and

g(x⊥) is the wave profile function. To obtain the solution of the exact shock wave

of IDG, we will find the form of the wave profile function g(x⊥). Let us consider

the massless point particle travels in the positive z direction with momentum pµ =

|p|(δµt + δµz ). The related null source creates the shock-wave geometry can be written

as Tuu = |p|δ(x⊥)δ(u). Let us introduce the Ricci tensor for the shock waves,

Ruu = −δ(u)

2

∂2

∂2
⊥
g(x⊥). (2.39)

For the Kerr-Schild form, the energy-momentum tensor can be defined as Tµν =

|p|δ(x⊥)δ(u)λµλν . The null source coupled IDG field equations can be recast as

[1 + αc(∂
2
⊥F2(∂2

⊥) + 2∂2
⊥F3(∂2

⊥))]∂2
⊥g(x⊥) = −16πG|p|δ(x⊥). (2.40)

For the form factors, equation (2.40) becomes a modified Poisson equation,

e−
∂2
⊥
M2 ∂2

⊥g(x⊥) = −16πG|p|δ(x⊥). (2.41)

By using Fourier transform a solution can be obtained, one can calculate this step by

step,

e−
∂2
⊥
M2 ∂2

⊥g = −κδ(x⊥), (2.42)
2 In this subsection, or the details, we followed this article [8]
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where κ = 16πG|p|. By Fourier transformation,

g̃ =
κ

2π

e−
p2

M2

p2
.” (2.43)

Then,

g = (
κ

2π
)(

1

2π
)

∫ ∫
e−

p2

M2 .e−i~p.~r

p2
pdpdθ

=
κ

4π2

∫ ∞
0

e−
p2

M2

p
dp

2πJ0(pr)︷ ︸︸ ︷∫
e−iprcosθdθ

(2.44)

where ~p.~r = prcosθ.

The solution reduces to,

g(r) =
κ

2π

∫ ∞
0

e−
p2

M2

p
J0(pr)dp. (2.45)

By using J ′0(x) = J1(x). The equation reduces to

dg

dr
=

∫
e−

p2

M2 J1(pr)dp. (2.46)

g(r) = −8G|p|ln
( r
r0

− 1

2
Ei(−

r2M2
s

4
)
)

(2.47)

The equation reduces to a new form (modified Poisson type equation) which is (2.41)

The profile function becomes by using Ms −→∞ limit,

g(r) = −8G|p|ln(
r

r0

), (2.48)

which is the Einstein’s gravity result which was expected. Therefore, the gravitational

shock-wave solution metric for IDG is

ds2 = −dudv − 4G|p|δ(u)

(
ln(

r2

r2
0

− Ei(−r
2M2

s

4
)

)
du2 + dx2

⊥. (2.49)

where Ei is the exponential integral function.
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CHAPTER 3

ADS PLANE WAVES IN HIGHER DERIVATIVE GRAVITY

3.1 AdS Plane Wave Solutions of Quadratic Gravity

Quadratic gravity played a crucial role in constructing the solutions of the generic

gravity theory 1. The field equations of quadratic gravity are given and for AdS-

plane waves metric reduce to a trace part and nonlinear wave types of equation on

the traceless Ricci tensor (3.24). In this section, we study the exact solutions with the

help of the Chapter 3. To obtain the field equations for PP-waves in this theory with

Λ0 = 0, one simply takes the l −→∞ limit. Note that in this limit Sµν = Rµν .

In the previous section, it was argued that the metric in the form of (1.53) gives a

detail about the relation between field equations of quadratic gravity and solutions of

the linearized field equations.AdS-plane waves and AdS-spherical waves of quadratic

gravity theories played an important role. We will study here the AdS-plane wave

given as

ds2 =
l2

z2
(2dudv + dx.dx+ dz2) + 2V (u, x, z)du2, (3.1)

where u and v are both null coordinates and l is the AdS radius.

The traceless Ricci tensor is

S = ρλµλν . (3.2)

For the class of Kerr-Schild-Kundt metric and for D-dimensional metric, the Ricci

tensor is

Rµν = − 3

l2
gµν + ρλµλν (3.3)

where

ρ ≡ −
(
� + 2ξµ∂µ +

1

2
ξµξµ −

4

l2

)
H, (3.4)

1 In this chapter, for the details on the AdS plane waves in higher derivative gravity, see [18].
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which is the scalar function.

The Ricci scalar is

R = −12

l2
. (3.5)

Cµανβ in terms of the full metric quantities can be written as

Cµανβ = λµλν

[
−∇α∂βH − ξ(α∂β)H −

1

2
ξαξβH −

1

2
gαβ

(
ρ− 4

l2
H
)]

+λαλβ

[
−∇µ∂νH − ξ(µ∂ν)H −

1

2
ξµξνH −

1

2
gµν

(
ρ− 4

l2
H
)]

−λµλβ
[
−∇α∂νH − ξ(α∂ν)H −

1

2
ξαξνH −

1

2
gµν

(
ρ− 4

l2
H
)]

−λαλν
[
−∇µ∂βH − ξ(µ∂β)H −

1

2
ξµξβH −

1

2
gµβ

(
ρ− 4

l2
H
)]

(3.6)

Then, the definition

Ωαβ = −
[
∇α∂βH + ξ(α∂β) +

1

2
ξαξβH +

1

2
gαβ

(
ρ− 4)

l2
H
)]

(3.7)

The Weyl in tensor in the general form is

Cµανβ = 4λ[µΩα][βλν] (3.8)

3.1.1 The Field Equations of Quadratic Gravity

If we rearrange the equation (2.2) [23], by using new properties like α = 0, β = 0,

γ = 0,
1

κ
[Rµν −

1

2
gµνR + Λ0gµν ] = 0, (3.9)

where

Rµν = − 3

l2
gµν + λµλνρ, (3.10)

where

R = gµνRµν = − 3

l2
gµνgµν . (3.11)

One can see easily that this term is valid for four dimensions (D = 4).

O = −[�̄ +
4z

l2
∂z −

2

l2
]H, (3.12)

Λ0 = 0. (3.13)
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Hence,
1

κ
[−λµλν(�̄ +

4z

l2
∂z −

2

l2
)]H = 0, (3.14)

which means that H satisfies the ρ = 0 equation.

The equation (2.2) is the field equations of quadratic gravity, where

R = −12

l2
, (3.15)

Rµν = − 3

l2
gµν + ρλµλν , (3.16)

Sµν = Rµν −
1

4
gµνR

(
Rµν −

1

4
gµνR

)
,

Sµν = − 3

l2
gµν + ρλµλν −

1

4
gµν(−

12

l2
),

Sµν = ρλµλν .

(3.17)

For (3.1), the equation can be rearranged as,

1

κ

[
− 3

l2
gµν +

6

l2
gµν + Λ0gµν

]
+ 2α

[
− 12

l2
(
− 3

l2
gµν − Sµν

)]
−72

l4
αgµν + (2α + β)

[
gµν�−∇µ∇ν

](
− 12

l2

)
+β�

[
− 3

l2
gµν − Sµν −

1

2
gµν −

12

l2

]
+ 2β

[
RµσνρR

σρ − 1

4
gµνRσρR

σρ
]

+2γ
[
RRµν − 2RµσνρR

σρ +RµσρτRν
σρτ − 2RµσRν

σ − 1

4
gµνR

2
τλσρ

−gµνR2
σρ −

1

4
gµνR

2
]

= 0.

(3.18)

By doing the term substitutions and by seperating the terms, I can obtain the next one,

gµν

[ 3

κl2
+

Λ

κ

]
+ gµν

[
− 24α�

l2
− 15β�

l2
− β�

2
+

18β

l4
− 9

l4

]
+ gµν

(
− 84

l4
)

+gµν
(
− 216γ

l4
)

+ Sµν

[
− 1

κ
+

24

l2
− β�

]
+ Sµν

[4β
l4
− 40γ

l2
]

+
24α∇µ∇ν

l2
+

12β∇µ∇ν

l2
− 12β�

l2
(3.19)

where

RµσνρR
σρ =

9

l4
gµν +

2

l2
Sµν , (3.20)

RRµν =
12

l2
[
3

l2
gµν + Sµν ], (3.21)
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RµσρτRν
σρτ =

6

l4
gµν + 4

Sµν
l2
. (3.22)

Then, the new form of the equation is,

gµν

[Λ0

κ
+

3

κl2
− 9

l4
+

144

l4

(
− α

2
− 2γ

)
+

18

l4

(
β − 2γ

)
− γ 48

l4

]
+Sµν

[
− 1

κ
+

24

l2

(
α− γ

)
+

4β

l2
− 16γ

l2

]
+

12

l2

[
2α∇µ∇ν + β∇µ∇ν − β�

]
= 0.

(3.23)

Hence, one can arrange and find this last form of this equation,(Λ0

κ
+

3

κl2
− f 18

l4

)
gµν + β

(
� +

2

l2
−M2

)
Sµν = 0, (3.24)

where

M2 = − 1

β

[1

κ
− 2

l2

(
12α + 3β

)]
. (3.25)

f = 0 (3.26)

The trace part of the (3.24) gives
Λ0

κ
+

3

κl2
− f 18

l4
= 0 (3.27)

which also determines the cosmological constant.

The traceless part of the field equation reads

(�̄ +
2

l2
−M2)(�̄ +

2

l2
)(λµλνH) = 0, (3.28)

The metric function H satisfies a fourth-order equation,(
� +

4z

l2
∂z −

2

l2
−M2

)
×
(
� +

4z

l2
∂z −

2

l2

)
H(u, ~x, z) = 0, (3.29)

the general solution of (3.29) can be written from the second-order parts; first one is

the pure Einstein theory, (
� +

4z

l2
∂z −

2

l2

)
Ha(u, ~x, z) = 0, (3.30)

and the other is a “massive” version of the theory(
� +

4z

l2
∂z −

2

l2

)
Hb(u, ~x, z) = 0. (3.31)

with H = Ha +Hb. I know Ha, let us try to write Hb [18],

Hb(u, ~x, z) = z
D−5

2 [ab,1Iνb(zξb) + ab2Kvb(zξb)]× sin(~ξb.~x+ ab3). (3.32)

where νb = 1
2

√
(D − 1)2 + 4l2M2.
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3.2 Infinite Derivative Gravity

In the Kerr-Schild form,

gµν = ḡµν + 2Hλµλν , (3.33)

where ḡµν is an AdS background metric. H is a scalar function that satisfies

λµ∂µH = 0. (3.34)

λµ is a vector satisfying,

λµλµ = 0, ∇µλν = ξ(µλν), ξµλ
µ = 0 (3.35)

The curvature scalar R is constant. Additionally, the Ricci tensor, becomes

Rµν = − 3

l2
gµν + λµλνOH, (3.36)

where l is the AdS radius as well as O defines the operator reads,

O = −
(
� + 2 ξµ∂µ +

1

2
ξµξµ −

4

l2

)
. (3.37)

For D = 4, we can obtain traceless ricci tensor (3.17),

Sµν = λµλνOH, (3.38)

�(λµλνH) = �̄(λµλνH) = −λµλν
(
O +

2

l2

)
. (3.39)

Hence, the equation is,

�(λµλνH) = −λµλν

(
−�− 2ξµ∂µ −

1

2
ξµξµ +

6

l2

)
. (3.40)

Also,

�Sµν = −λµλν

(
O +

2

l2

)
OH. (3.41)

To make it more explicit,

Sµν = −
(
�̄ +

2

l2

)
(λµλνH) = −1

2

(
�̄ +

2

l2

)
hµν , (3.42)
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where hµν = 2Hλµλν .

Hence, AdS-plane wave metric hµν = gµν − ḡµν with the help of ∂µOH = 0

�nSµν = (−1)nλµλν

(
O +

2

l2

)n

OH = �̄nSµν . (3.43)

To get the Weyl tensor with the higher order derivative, one can start with

∇µ∇νC
µανβ =

1

2

[
�Sαβ −∇µ∇αSµβ

]
, (3.44)

for constant curvature spacetime.

Then, if one uses∇µ∇γSµν = R
3
Sγν which holds the metric tensor (3.33).

∇µ∇νC
µανβ =

1

2

[
�Sαβ − R

3
Sαβ

]
. (3.45)

Hence, one can reach the equation of the Weyl tensor [9],

∇µ∇ν�
nCµανβ =

(
� +

R

3

)n
∇µ∇νC

µανβ =
1

2

(
� +

R

3

)n(
�− R

3

)
Sαβ. (3.46)

One can change the field equations of the IDG to a simply form [9],(
Λ+

3

l2

)
gµν+

[
1+αc[f 1,0

+
f2,0

2

]
R+(�̄+

2

l2
)F2(�̄s)+2F3(�̄s−

4

M2
s l

2
)(�̄+

4

l2
)
]
Sµν = 0.

(3.47)

The trace part of the equation is the cosmological constant,

Λ = − 3

l2
. (3.48)

The traceless part gives non local parts,[
1+αc

[
−12

l2
(2f1,0+

f2,0

2
)+(�̄+

2

l2
)F2(�̄s)+2F3(�̄s−

4

M2
s l

2
)(�̄+

4

l2
)
]](

�̄+
2

l2

)
λµλνH = 0

(3.49)

where

R = −12

l2
, (3.50)

Sµν = λµλνOH = λµλν(�̄ +
2

l2
)H. (3.51)

One can choose, the form factors as F1 = 0, F2 = 0, F3 6= 0, the theory reduces to

spin-2 excitations as well as no spin-0 mode exist [28].

F1(�s) = F2(�s) = 0, (3.52)
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F3(�s) =
1

2

e
−(�s+ 8

l2M2
s

) − 1

�s + 8
l2M2

s

. (3.53)

The AdS wave equation (3.49) can be reduced, [9]

e
−
(
�̄s+ 2

M2
s l

2

)(
�̄ +

2

l2

)
λµλνH = 0. (3.54)

One can write AdS wave metric by using null coordinates,

u =
1√
2

(x− t), v =
1√
2

(x+ t), (3.55)

ds2 =
l2

z2

(
2dudv + dy2 + dz2

)
+ 2Hdu2. (3.56)

In the null coordinates,

, ξµ =
2

z
δzµ (3.57)

O = −
(
�̄ +

4z

l2
∂z −

2

l2

)
, (3.58)

�̄ =
z2

l2
(∂2
z + ∂2

y)−
2z

l2
∂z −

4z2

l2
∂u∂v, (3.59)

where ∂2 = ∂2
y + ∂2

z .

By using equation (3.39), the field equations (3.54) reduce to new form is,

1︷ ︸︸ ︷
e
−(�̄s+ 2

M2
s l

2 )

2︷ ︸︸ ︷(
�̄ +

2

l2

)
λµλνH = 0, (3.60)

(1) −→ e
−(�̄s+ 2

M2
s l

2 )
= e

−( �
M2
s

+ 2

M2
s l

2 )
= e

− 1

M2
s

[
z2

l2
∂2− 2z

l2
∂z− 4z2

l2
∂u∂v+ 2

l2

]
. (3.61)

Hence, the first part of the equation is,

e
−(�̄s+ 2

M2
s l

2 )
= e

− 1

M2
s l

2

[
z2∂2−2z∂z+2

]
, (3.62)

where �s = �
M2
s

.

(2) −→
[
(�̄ +

2

l2
)λµλνH

]
= �̄λµλνH = −λµλνOH = −λµλν

[
− (�̄ +

4z

l2
∂z −

2

l2
)
]

= λµλν

[z2

l2
∂2 − 2z

l2
∂z −

4z2

l2
∂u∂v

]
+

4z

l2
∂zλµλν −

2

l2
λµλν .

(3.63)
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Hence, the second part of the equation is,

(�̄ +
2

l2
)λµλνH = λµλν

z2

l2
∂2 +

2z

l2
∂zλµλν −

2

l2
λµλν . (3.64)

Therefore, the field equations reduce to

e
− z

2∂2+2z∂z−2

M2
s l

2 [z2∂2 + 2z∂Z − 2]H = 0. (3.65)

One can think that the eigenvalue problem of the operator can be solved as [27],

(z2∂2 + 2z∂Z − 2)Hα = −α2Hα, (3.66)

where Hα are the eigenfunctions and w is the eigenvalues. Hence, the equation re-

duces to

(z2∂2 + 2z∂Z − 2)H = 0. (3.67)

where e
α2

M2
s l

2α2 = 0.

That is, the only AdS wave solutions of the source-free theory are those of the Ein-

stein’s general relativity in the AdS background.

3.2.1 Impulsive Waves 3+1 Dimensions

One can search for impulsive gravitational waves that are generated by massles sources

in IDG [9] 2. Since we put a non-zero stress-energy on the right hand side of the equa-

tion of motion, one can expect that the resulting solutions will be affected by presence

of non-local form factors with infinite derivatives.

3.2.1.1 Massless Point-Like Source

Let us talk about the impulsive AdS wave metric,

ds2 =
l2

z2
(2dudv + dy2 + dz2) + 2δ(u)H(y, z)du2. (3.68)

Consider a massless point particle travelling in the positive x-direction with momen-

tum pµ = E(δµt +δµx). The metric for this particle guu = 2δ(u)H(y, z), such a particle

could be described by a source,

Tuu = Ez2
0l
−2δ(u)δ(y)δ(z − z0). (3.69)

2 In this section, for the details on the impulsive gravitational waves , see [9].
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The AdS-wave equation is,

e
− z

2∂2+2z∂z−2

M2
s l

2 (z2∂2 + 2z∂z − 2)H(y, z) = −κδ(y)δ(z − z0), (3.70)

where the constant κ = 16πGEz2
0 .

In order to solve the equation (3.70), we first take the Fourier transform in coordinate

y,

e
−
z2∂2+z2∂2

y+2z∂z−2

M2
s l

2 (z2∂2 + z2∂2
y + 2z∂z − 2)H(y, z) = −κδ(y)δ(z − z0). (3.71)

Let us define the Fourier transforms as,

f̃(k) =
1√
2π

∫
<
dxf(y)e−iky, (3.72)

f(y) =
1√
2π

∫
<
dxf̃(k)eiky. (3.73)

Hence, fourier transform, y −→ k

H(y, z) =
1√
2π

∫
<
dkH̃(k, z)eiky, (3.74)

δ(y) =
1

2π

∫
<
dkeiky. (3.75)

The equation (3.75) turns into,

e
− z

2∂2−z2k2+2z∂z−2

M2
s l

2 (z2∂2 − z2k2 + 2z∂z − 2)H(k, z) = − κ√
2π
δ(z − z0). (3.76)

Using this substitution, Ĥ = V (k,z)√
z

, one can rewrite the last equation as,

(z2∂2
z , 42z∂z − k2z2 − 2)

1√
z
V (k, z) =

1√
z
ε(k)V (k, z),

1√
z
e
− ε(k)

l2M2
s ε(k)V (k, z) = − κ√

2π
δ(z − z0),

e
− ε(k)

l2M2
s ε(k)V (k, z) = −κ̄δ(z − z0),

(3.77)

where

κ̄ =
κ
√
z0√

2π
. (3.78)
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Let’s examine the eigenvalue problem for this operator,

ε(k)vα = αvα, (3.79)

vα = aJβ(−ikz) + bYβ(−ikz),

= ãIβ(kz) + b̃Kβ(kz),

= ãIiβ̄(kz) + b̃Kiβ̄(kz),

(3.80)

where

β =

√
9

4
+ α, β = iβ̄, β̄ ε R. (3.81)

Assuming k > 0,

ε(k)Kiβ̄(kz) = −(β̄2 +
9

4
)Kiβ̄(kz) (3.82)

where

ã = 0, b̃ = 1. (3.83)

where Kiβ̄ are Bessel functions of the imaginary order. One can express the right part

of the (217) in terms of the eigenfunctions Kiβ̄

V (z̄0) =

∫ ∞
0

dz̄

δ(z−z0)︷ ︸︸ ︷[ ∫ ∞
0

dβ̄
2

π2z̄0

Kiβ̄(z̄0)β̄sinh(πβ̄)Kiβ̄(z̄)

]
f(z̄). (3.84)

One can arrange this as [29],

δ(z − z0) = kδ(z − z0) =

∫ ∞
0

dβ̄
2

π2z̄0

Kiβ̄(kz̄0)β̄sinh(πβ̄)Kiβ̄(kz̄), (3.85)

for arbitrary k > 0,

z̄ = kz, z̄0 = kz0. (3.86)

Now, one can solve equation (3.77),

V (k, z) = −κ̄e
ε(k)

M2
s l

2

ε(k)
δ(z − z0),

= −κ̄
∫ ∞

0

dβ̄
2

π2z0

Kiβ̄(kz0)β̄sinh(πβ̄)
e
ε(k)

M2
s l

2

ε(k)
)Kiβ̄(kz).

(3.87)

Substitute κ̄,

V (k, z) =

√
2κ

π
5
2
√
z0

∫ ∞
0

dβ̄
e
−(β̄2+ 9

4 )

M2
s l

2

β̄2 + 9
4

β̄sinh(πβ̄) X Kiβ̄(kz0)Kiβ̄(kz). (3.88)
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After the arrangement, the solution of (3.76) takes a new form as integral,

For k > 0 [9],

Ĥ(k, z) =
16GEz

3
2
0

π2

1√
z

∫
<
dk

∫ ∞
0

dβ̄
e
−(β̄2+ 9

4 )

M2
s l

2

β̄2 + 9
4

β̄sinh(πβ̄) X Kiβ̄(|k|z0)Kiβ̄(|k|z)eiky

(3.89)

For k < 0,

Ĥ(k, z) = Ĥ(−k, z). (3.90)

When Ms goes to infinity,− (β2+ 9
4

)

M2
s l

2 goes to zero. Hence the equation reduces to a new

form, and by using some special integral rules, one can arrange the equation [30],∫ 0

∞
dβ̄

β̄sinh(πβ̄)

β2 + 9
4

Kiβ̄(|k|z0)Kiβ̄(|k|z) =

{
π2

2
I 3

2
(|k|z)K 3

2
(k|z0|) z < z0,

π2

2
I 3

2
(|k|z0)K 3

2
(k|z|) z > z0.

(3.91)

One can arrive at the function,

HGR =
2GE

z2

[
(y2 + z2 + z2

0) log (1 +
4zz0

y2 + (z − z0)2
)− 4zz0

]
. (3.92)

This GR solution represents an impulsive gravitational wave that is generated by a

massless particle.

The impulsive wave solution of GR diverges at the location of the particle, where

it has distributional curvature. In the non-local impulsive wave solution of IDG is

regular everywhere because of the improved behavior of the propagator in the UV

scale.

3.2.1.2 Massless Linear Source

Tuu = Ez0l
−2δ(u)δ(z − z0) for which one could find an impulsive wave solution.

A linear null source which moves in x-direction with pµ = E(δµt + δµx) which is

momentum and extends to infinity in y-direction. The choice of the source says that

the function H could be independent of y. Hence, the field equation takes a simpler

form,

e
− z

2∂2
z+2z∂z−2

M2
s l

2 (z2∂2
z + 2z∂z − 2)H(z) = −L4δ(z − z0), (3.93)

where L4 = 16πGEz0.

After transforming the equation to the coordinate w = logz and defining H̃(w) =
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H(ew), one can write,

H̃(w) = −L4e
−w0

e
(∂2
w+∂w−2)

Ml
s
2

(∂2
w + ∂w − 2)

δ(w − w0),

= L4e
−w0

∫ ∞
1

M2
s l

2

es(∂
2
w+∂w−2)δ(w − w0)ds,

= L4e
−w0

∫ ∞
1

Ml
s
2

e−2ses∂
2
wδ(w − w0 + s),

H̃ = L4e
−w0

∫ ∞
1

M2
s l

2

dse−2s

∫
<
dw̃

e−
(w−w̃)2

4s

√
4πs

δ(w̃ − w0 + s).

(3.94)

One can return back to the variable z, one can obtain the solution of (3.93) [9],

H(z) =
8πGE

3z2zz0

[
z3

0erfc
( 3

2Msl
− Msl

2
log(

z

z0

)
)

+ z3erfc
( 3

2Msl
+
Msl

2
log(

z

z0

)
)]
,

(3.95)

which is plotted in figure, where w −→ Log(z) and w0 −→ Log(z0).

Figure 3.1: The red curve represents the solution of IDG and the blue curve represents

the solution of GR (Mathematica).

By calculating with the local limit Ms −→∞, one can reach the GR solution,

HGR =
8πGEz

3z0

(
1 +

z3
0

z3
− |1− z3

0

z3
|
)
. (3.96)

The GR solution has a discontinuity at the location of the source z = z0, in contrast

to the IDG solution is smooth everywhere.

3.2.2 Impulsive Waves In 2+1 Dimensions

In this subsection, we have followed [9], solutions in 2 + 1 dimensions will be studied.

The motivation for this section comes from the fact that the basic parts which are
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almost the same, but focus on the crucial differences from the 4D case.

Weyl tensor is zero in 2+1 dimensions so the IDG action contains only the form

factors. Hence, the traceless part of the source-free field equations in 3-D will be

reduced to[
1 + αc

[
− 12

l2
(f1,0 +

f2,0

3
) + (�̄ +

2

l2
)F2(�̄s)

]]
×
(
�̄ +

2

l2
λµλνH

)
= 0 (3.97)

One can get this equation from the equation (3.49), where F3 is zero. One needs to

set the form factor F2(�s) to be in this form to avoid ghost like degrees of freedom.

Ghost gives the negative KE and one of the purpose of the IDG is avoid this ghost

instabilities.

Now, one can note that the field equation is independent of the form factor F1(�s).

In the next section, solutions in the presence of the non-zero source will be found.

3.2.2.1 Massless Point-Like Source

Consider a point-like particle moving in the positive x-direction with the momentum

pµ = E(δµt + δµx) with the stress energy tensor Tuu = Ez2
0l
−2δ(u)δ(z − z0). This

source together with the impulsive-wave profile H = δ(u)H(z) leads to a new equa-

tion,

e
− z

2∂2
z+3z∂z

M2
s l

2 (z2∂2
z + 3z∂z)H(z) = −L3δ(z − z0), (3.98)

where L3 = 16πG3Ez
2
0/C.

With the help of the w = logz, H̃(w) = H(ew) and with the Heat-Kernel method,

H̃(w) = −L3e
−w0

e
(∂2
w+2∂w)

M2
S
l2

∂2
w + 2∂w

δ(w − w0),

= L3e
−w0

∫ ∞
1/M l

s
2

ds

∫
<
dw̃

e− (w−w̃)2

4s√
4πs

δ(w̃ − w0 + 2s)

(3.99)

which is same calculation with the equation (3.94).

The particular solution of equation (3.98) is [9],

H(z) =
4πG3Ez0

Cz2

[
z2

0erfc
( 1

Msl
−Msl

2
log(

z

z0

)
)

+ z2erfc
( 1

Msl
+
Msl

2
log(

z

z0

)
)]
,

(3.100)
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Figure 3.2: The red curve shows the solution of IDG and the blue curve represents

the corresponding solution of GR.

which can be plotted in the figure.

By calculating the local limit Ms −→∞, one can reach the GR solution,

HGR = 4πG3Ez0

(
1 +

z2
0

z2
− |1− z2

0

z2
|

)
(3.101)

3-D GR solution is stable but has a discontinuity at z = z0. This discontinuity prob-

lem is solved by infinite derivatives. The IDG impulsive wave solution is smooth

everywhere. The full solution approaches the general relativity solution at the confor-

mal infinity (z = 0). The metric of the GR solution is just the AdS metric.
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CHAPTER 4

CONCLUSIONS AND LAST REMARKS

In this thesis, we have firstly studied pp-wave space-times in ghost-free infinite deriva-

tive gravity and shown that these space-times are exact solutions of the theory. The

pp-wave metrics also solve linearized field equations of the IDG for the pp-wave

space-time. By using the metric in the Kerr-Schild form gives an important simpli-

fication on the field equations. We have demonstrated that, as expected, sourceless

theory does not bring any pp-wave solutions other than that of GR since non-local

interactions do not affect source-free linear field equations. To discuss the effects of

non-local interactions, we have considered null source coupled field equations and

found exact gravitational shock wave solution of the theory.

Secondly, we have studied the pp-wave solutions of the IDG as in the pp-wave case,

the exact AdS-plane wave solutions of sourceless theory are also solutions of GR. In

the presence of a source, we constructed impulsive waves created by massless sources

in 2+1 and 3+1 dimensions. The non-locality described by form factors with higher

derivatives which plays an important role in the non-zero source. The solutions which

have obtained of the IDG are regular everywhere due to non-local interactions. The

solutions which we have found get modified because of the non local impacts in the

UV part, but not in the IR part.

The field equations of IDG were examined. Symmetric tensors were given in the

chapter 2 which containing the double sums and they are too hard to solve explic-

itly. We determined the full equations of motion and we can see that if one keeps the

terms linear in curvature, can find out the linearized limit in flat-space without using

any new degrees of freedom which is expected.

We observed that even though gravitational shock-wave solution comes with a source

which has Dirac delta type singularity, the solution is regular at the location of source
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because of the gravitational non local interactions. Then, we have found a non-

singular gravitational shock-wave solution at the non-linear level.

The solutions given in this thesis are crucial solutions. Few exact solutions exist in the

quadratic gravity theories and gravitational waves have lots of unexplored possibili-

ties. Also, the quadratic theories are rare in the literature, so these are very interesting.
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Appendix A

USEFUL FORMULAS AND BIANCHI IDENTITIES

A.1 Curvature

The christoffel symbol formula is,

Γλµν =
1

2
gλτ (∂µgντ + ∂νgµτ − ∂τgµν) (A.1)

The Riemann tensor and its properties are,

Rλ
µσα = ∂σΓλµα − ∂αΓλµσ + ΓλσρΓ

ρ
αµ − ΓλαρΓ

ρ
σµ (A.2)

Rρσµα = gρλ(∂µΓλασ − ∂αΓλµσ) (A.3)

Rµαλσ = −Rαµλσ = Rµασλ = Rλσµα (A.4)

The Ricci tensor is symettric,

Rµν = Rνµ (A.5)

The Ricci scalar is,

R = gµνRµν = gµν = ∂αΓαµν − ∂µΓαµα + gµνΓααρΓ
ρ
νµ − gµνΓανρΓραµ (A.6)

A.2 Bianchi Identities and Riemann Tensor Properties

The Bianchi Identity equation is the fundamental equations to find the Einstein equa-

tion.

In general relativity and tensor calculus, the contracted Bianchi identities,

∇µGµν = 0, (A.7)
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where Gµν is the Einstein tensor such that

Gµν = Rµν −
1

2
gµνR, (A.8)

where Rµν is the Ricci tensor and R is the Ricci scalar. One can write this as,

∇µR
µ
ν =

1

2
∇νR. (A.9)

The usual Bianchi identity is

∇µRνλρ
δ +∇νRλµρ

δ +∇λRµνρ
δ = 0 (A.10)

where Rδ
νλρ is the Riemann tensor.

Remember the following properties of the Riemann tensor

Rµνλ
ρ = −Rνµλ

ρ, Rµνλ
ρ = −Rµν

ρ
λ, Rµνλ

ρ = Rλ
ρ
µν (A.11)

A.3 Bianchi Identities for the Weyl Tensor

Once contracted Bianchi identity is

∇νRµανβ = ∇µRαβ −∇αRµβ, (A.12)

for constant R, gives

∇νRµανβ = ∇µSαβ −∇νSµβ. (A.13)

Contracting one more time, one has

∇µSµν = 0 for R : const. (A.14)

and we can get

∇µCµανβ =
D − 3

D − 2
(∇νSβα −∇βSνα) (A.15)

contracted once, for constant curvature spacetimes.

Then, ∇µ∇νCµανβ will be

∇µ∇νCµανβ =
D − 3

D − 2
(�Sαβ −∇µ∇αSµβ) (A.16)

Then, using

∇µ∇σSµν =
R

D − 1
Sσν . (A.17)

We can get

∇µ∇νCµανβ =
D − 3

D − 2
(�Sαβ −

R

D − 1
Sαβ) (A.18)
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A.4 The Specific Calculation

One can obtain the equation (3.46), I will show how to get this equation step by step,

∇µ∇ν�C
µανβ = ∇µ[∇ν ,∇σ]∇σCµανβ +∇µ∇σ∇ν∇σCµανβ

= ∇µ

[
Rνσ

σ
λ∇λCµανβ +Rνσ

µ
λ∇σCλανβ +Rνσ

α
λ∇σCµλνβ +Rνσ

ν
λ∇σCµαλβ

Rνσ
β
λ∇σCµανλ

]
+∇µ∇σ∇ν∇σCµανβ

= ∇µ

[
−Rνλ∇λCµανβ +∇λC

λαµβ +∇λC
µλαβ +RσλC

µαλβ +∇λC
µαβλ

]
+∇µ∇σ∇ν∇σCµανβ

= ∇µ

[
∇λ(C

µβλα + Cµλαβ + Cµαβλ)

]
+∇µ∇σ∇ν∇σCµανβ

∇µ∇ν�C
µανβ = ∇µ∇ν∇σ∇σCµανβ

(A.19)

where

∇µ∇λ(C
µ[βλα]) = 0 (A.20)

The covariant derivative of the Weyl tensor comes as zero.

Rνα∇λCµανβ = ρλνλλC
µανβ = −ρλλλν∇λCµανβ = 0 (A.21)

∇µ[∇ν ,∇σ]∇σCµανβ = ∇µ∇ν∇σC
µανβ −∇µ∇σ∇ν∇σCµανβ (A.22)

If we try to solve the last equation, we are going to start with,

∇µ∇ν�C
µανβ = ∇µ∇σ∇ν∇σCµανβ

= ∇µ�∇νC
µανβ +∇µ∇σ[∇ν ,∇σ]Cµανβ

= ∇µ�∇νC
µανβ +∇µ∇σ[Rνσ

µ
λC

λανβ +Rνσ
α
λC

µλνβ +Rνσ
ν
λC

µαλβ +Rνσ
β
λC

µανλ]

= ∇µ�∇νC
µαλβ +∇µ∇σ

[
R

12
(Cσ

αµβ + Cµ
σ
αβ + Cµαβ

σ) +RσλC
µαλβ

]

= ∇µ�∇νC
µαλβ +∇µ∇σ

[
R

12
(Cσ

αµβ + Cσ
µβα + Cσ

βαµ) + (− 3

l2
gσλ)C

µαλβ

]
(A.23)
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where

Rσλ =
3

l2
gσλ + λσλλO (A.24)

= ∇µ�∇νC
µαλβ +∇µ∇σ

[
R

12

=0︷ ︸︸ ︷
(Cσ

[αµβ])− 3

l2
Cµα

σ
β

]
= ∇µ�∇νC

µαλβ − 3

l2
[∇µ∇σC

µασβ]

= ∇µ�∇νC
µαλβ − 3

2l2
[�Sαβ − R

3
Sαβ]

(A.25)

where
∇µ∇νC

µανβ =
1

2
[�Sαβ − R

3
Sαβ]

= ∇µ�∇νC
µαλβ − 3

2l2
[�Sαβ +

4

l2
Sαβ]

(A.26)

If we look at for the 4-D,

R = −12

l2
(A.27)

∇µ∇ν�C
µανβ = ∇µ�∇νC

µανβ − 3

2l2
[�Sαβ +

4

l2
Sαβ] (A.28)

Let’s define a new value,

Aαβ = − 3

2l2
[�Sαβ +

4

l2
Sαβ] (A.29)

Then,

∇µ∇ν�C
µανβ = ∇σ∇µ∇σ∇νC

µανβ + [∇β,∇σ]∇σ∇νC
µανβ + Aαβ

= ∇σ∇µ∇σ∇νC
µανβ + Aαβ + [Rµσ

σ
λ∇

λ∇νC
µανβ +Rµσν

λ∇σ∇λC
µανβ

+Rµσ
µ
λ∇

σ∇νC
λανβ +Rµσ

β
λ∇

σ∇νC
µλνβ +Rµσ

ν
λ∇

σ∇νC
µαλβ]

= ∇σ∇µ∇σ∇νC
µανβ + Aαβ + [−Rµλ∇λ∇νC

µανβ +Rσλ∇σ∇νC
λανβ

+
R

12
(−∇ν∇λC

λανβ +∇λ∇νC
αλνβ +∇λ∇νC

ναλβ +∇λ∇νC
βανλ)]

= ∇σ∇µ∇σ∇νC
µανβ + Aαβ +

R

12
∇ν∇λ[−Cλανβ + Cαλνβ + Cναλβ + Cβανλ]

= ∇σ∇µ∇σ∇νC
µανβ + Aαβ +

R

12
∇ν∇λ[−Cλανβ +

=0︷ ︸︸ ︷
Cν[βαλ]]

= ∇σ∇µ∇σ∇νC
µανβ + Aαβ +

1

l2
∇ν∇λC

νβλα

= ∇σ∇µ∇σ∇νC
µανβ − 3

2l2
[�Sαβ +

4

l2
Sαβ] +

1

2l2
[�Sαβ +

4

l2
Sαβ]

(A.30)
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Hence, the equation is,

∇µ∇ν�C
µανβ = ∇σ∇µ∇σ∇νC

µανβ +Bαβ (A.31)

where

Bαβ = − 1

l2
(�Sαβ +

4

l2
Sαβ) (A.32)

When we substitute Bαβ instead of the (A.32), calculations continue in the same way,

∇µ∇ν�C
µανβ = ∇σ∇µ∇σ∇νC

µανβ +Bαβ

= �∇µ∇νC
µανβ +∇σ[∇µ,∇σ]∇νC

µανβ +Bαβ

= �∇µ∇νC
µανβ +Bαβ +∇σ[Rµσν

λ∇λC
µανβ +Rµσ

µ
λ∇νC

λανβ +Rµσ
α
λ∇νC

µλνβ

+Rµσ
ν
λ∇νC

µαλβ +Rµσ
β
λ∇νC

µανλ]

= �∇µ∇νC
µανβ +Bαβ +∇σ

[
R

12
(−∇µC

µα
σ
β +∇νC

α
σ
νβ +∇µC

µα
σ
β +∇νC

βαν
σ)

+Rσλ∇νC
λανβ

]

= �∇µ∇νC
µανβ +Bαβ +∇σ

[
R

12
(∇µ[−Cµασβ + Cµβασ + Cµασβ + Cµσβα])− 3

l2
∇νC

σανβ

]

= �∇µ∇νC
µανβ +Bαβ +∇σ

[
− 1

l2
∇µ(−Cµασβ + Cµ[βασ])− 3

l2
∇µC

µβσα

]
= �∇µ∇νC

µανβ +Bαβ +− 2

l2
[∇σ∇µC

µασβ]

(A.33)

Hence, the equation turns into the

∇µ∇ν�C
µανβ = �∇µ∇νC

µανβ − 2

l2

(
�Sαβ +

4

l2
Sαβ

)
(A.34)
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∇µ∇ν�
2Cµανβ = ∇µ∇ν∇σ�Cµανβ

= ∇µ∇σ∇ν∇σ�Cµανβ +∇µ[∇ν ,∇σ]∇σ�Cµανβ

= ∇µ∇σ∇ν∇σ�Cµανβ +∇µ

[
Rνσ

σ
λ∇λ�Cµανβ +Rνσ

µ
λ∇σ�Cλανβ

+Rνσ
α
λ∇σ�Cµλνβ +Rνσ

ν
λ∇σ�Cµαλβ +Rνσ

β
λ∇σ�Cµανλ

]

= ∇µ∇σ∇ν∇σ�Cµανβ +∇µ

[ =0︷ ︸︸ ︷
−Rνλ∇λ�Cµανβ +

=0︷ ︸︸ ︷
Rσλ∇σ�Cµαλβ +∇µ�C

λαµβ

+∇λ�C
µλαβ +∇λ�C

µαβλ

]

= ∇µ∇σ∇ν∇σ�Cµανβ +∇µ∇λ�

Cµ[βλα]=0︷ ︸︸ ︷[
Cµβλα + Cµαβλ + Cµλαβ

]
(A.35)

The equations continue with the next calculation part, we are going to give new defi-

nition as Cαβ .

Therefore, the equation is

∇µ∇ν�
2Cµανβ = ∇µ∇σ∇ν∇σ�Cµανβ (A.36)

∇µ∇ν�
2Cµανβ = ∇µ∇σ∇ν∇σ�C

µανβ

= ∇µ∇σ∇σ∇ν�C
µαβ +∇µ∇σ[∇ν ,∇σ]�Cµανβ

= ∇µ�∇ν�C
µανβ +∇µ∇σ

[
Rνσ

µ
λ�C

λανβ +Rνσ
α
λ�C

µλνβ +Rνσ
ν
λ�C

µαλβ +Rνσ
β
λ�C

µανλ

]

= ∇µ�∇ν�C
µανβ +∇µ∇σ

[
R

12
(�Cσ

αµβ + �Cµ
σ
αβ + �Cµαβ

σ) +Rσλ�C
µαλβ

]

= ∇µ�∇ν�C
µανβ +∇µ∇σ

[
R

12
�(Cµβσα + Cµσαβ + Cµαβσ)− 3

l2
�Cµασβ

]

= ∇µ�∇ν�C
µανβ +∇µ∇σ

[
R

12
(

=0︷ ︸︸ ︷
Cµ[βσα])− 3

l2
�Cµασβ

]
(A.37)
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One can examined, the other denominations, and try to simplify these parts,

∇µ∇ν�
2Cµανβ = ∇µ�∇ν�C

µανβ − 3

l2
∇µ∇σ�C

µασβ (A.38)

∇µ∇ν�
2Cµανβ = ∇µ�∇ν�C

µανβ + Cαβ (A.39)

where

Cαβ = − 3

l2
∇µ∇σ�C

µασβ (A.40)

If we try to solve the last part,

∇µ∇ν�
2Cµανβ = ∇σ∇µ∇σ∇ν�C

µανβ + Cαβ + [∇µ,∇σ]∇σ∇ν�C
µανβ

= ∇σ∇µ∇σ∇ν�C
µανβ + Cαβ +

[
Rµσ

σ
λ∇

λ∇ν�C
µανβ +Rµσν

λ∇σ∇ν�C
µανβ

Rµσ
µ
λ∇

σ∇ν�C
λανβ +Rµσ

α
λ∇

σ∇ν�C
µλνβ +Rµσ

ν
λ∇

σ∇ν�C
µαλβ +Rµσ

β
λ∇

σ∇ν�C
µανλ

]

= ∇σ∇µ∇σ∇ν�C
µανβ + Cαβ +

[
−Rµλ∇λ∇ν�C

µανβ +Rσλ∇σ∇ν�C
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+
R

12
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αλνβ +∇λ∇ν�C
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]
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µανβ + Cαβ +

R
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[
−∇ν∇λ�C
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]
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l2
∇µ∇σ�C

µασβ +
1

l2
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νβλα

∇µ∇ν�
2Cµανβ = ∇σ∇ν∇σ∇νC

µανβ − 2

l2
∇µ∇σ�C

µασβ

(A.41)

Let’s define a new term,

Dαβ = − 2

l2
∇µ∇σ�C

µασβ (A.42)
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∇µ∇ν�
2Cµανβ = ∇σ∇ν∇σ∇νC

µανβ +Dαβ

= �∇µ∇ν�C
µανβ +∇σ[∇µ,∇σ]∇ν�C
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α
λ∇ν�

Cµλνβ +Rµσ
ν
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µαλβ +Rµσ
β
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]
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α
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σ
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Cν[βασ]

]
= �∇µ∇ν�C

µανβ − 2

l2
∇µ∇ν�C

µανβ − 3

l2
∇σ∇ν�

σανβ +
1

l2
∇σ∇ν�C

µασβ

= �∇µ∇ν�C
µανβ − 5

l2
∇µ∇ν�C

µανβ +
1

l2

∇µ∇ν�Cµβνα︷ ︸︸ ︷
∇σ∇µ�C

σβµα∇µ∇ν�
2Cµανβ

= �∇µ∇ν�C
µανβ − 4

l2
∇µ∇ν�C

µανβ

= (�− 4

l2
)∇µ∇ν�C

µανβ

(A.43)

One can know that

∇µ∇ν�C
µανβ =

(
�− 4

l2

)
∇µ∇νC

µανβ (A.44)

Therefore,

∇µ∇ν�
2Cµανβ =

(
�− 4

l2

)2

∇µ∇νC
µανβ (A.45)

Hence, one can get the general form of these two last equations ,

∇µ∇ν�
nCµανβ =

(
� +

R

3

)n
∇µ∇νC

µανβ =
1

2

(
� +

R

3

)n(
�− R

3

)
Sαβ (A.46)
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