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ABSTRACT

EXACT SOLUTIONS OF INFINITE DERIVATIVE GRAVITY

Ocal, Sultan Eyliil
M.S., Department of Physics
Supervisor: Prof. Dr. Bayram Tekin

Co-Supervisor: Assoc. Prof. Dr. Ercan Kiligarslan

August 2021, [54] pages

Infinite Derivative Gravity (IDG) is a modified gravity theory which can avoid the sin-
gularities and Ultraviolet problem of gravity. This thesis examines the effects of IDG
on these problems. First, the propagators and Newtonian potential will be examined
as well as the conditions necessary for avoidance of singularities for perturbations
around Minkowski background are found. Second, we study the exact pp-wave and
AdS-plane wave solutions of quadratic and Infinite derivative gravity theories. We
construct exact gravitational shock and impulsive wave solutions of IDG. We have
demonstrated that unlike the Einstein’s general relativity, even though these waves
are created by linear sources having Dirac delta type singularities, singularities get

smeared by the non-local interactions. All the calculations are just a review.

Keywords: Infinite Derivative Gravity, Singularities, PP-wave, AdS-plane wave, Non-

local interactions
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SONSUZ TUREVLI KUTLE CEKIM KURAMININ TAM COZUMLERI

Ocal, Sultan Eyliil
Yiiksek Lisans, Fizik Bolimii
Tez Yoneticisi: Prof. Dr. Bayram Tekin

Ortak Tez Yoneticisi: Dog. Dr. Ercan Kiligarslan

Agustos 2021 , [54] sayfa

Sonsuz tiirevli kiitle cekim teorisi tekillikler ve mor6tesi problemler icermeyen modi-
fiye bir kiitle cekim teorisidir. Tezde sonsuz tiirevli kiitle ¢ekim teorisinin bu problem
iizerindeki etkileri incelenecektir. Ilk olarak, ilerleticiler Newtonyen potansiyel ince-
lenecek, bununla birlikte Minkowski arka planindaki pertiirbasyonlar i¢in tekillikler-
den kacinmak amaciyla gerekli kosullar irdelenecektir. Ikinci kisimda, kuadratik ve
sonsuz tiirevli kiitle ¢cekim teorilerinin tam pp-dalga ve AdS-diizlem dalga ¢oziimleri
calisilacaktir. Sonsuz tiirevli kiitle ¢gekim teorisinin tam kiitle cekimsel sok ve impulsif
dalga ¢oziimleri insa edilecektir. Einstein genel gorelilik teorisinin aksine bu dalga-
lar Dirak delta tipi tekilliklere sahip lineer kaynaklar tarafindan olusturmalarina rag-
men, tekillikler lokal olmayan etkilesimler dolayisiyla ortadan kaldirilmalisdir. Tez-

deki tiim hesaplamalar onceden yapilmis ¢calismalarin yeniden gdzden gecirilmelidir.

Anahtar Kelimeler: Sonsuz tiirevli kiitle ¢cekimleri, Tekillikler, PP-dalgalari, AdS-

uzay1, Lokal olmayan etkilesimler
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CHAPTER 1

INTRODUCTION

Einstein’s theory of General Relativity based on the Riemannian geometry which is
the geometrical theory of gravitation has been very successful at describing gravity.
It explains many important problems one of which is the precession of the perihe-
lion of the Mercury which was the the first success of GR. Additionally, it examines
gravitational red-shift, lensing and waves as well as predicting black holes. There-
fore, one can see that GR is the most successful gravitational theory, being almost
universally accepted as well as well confirmed by observations. Even though GR
provides successful solutions, there is not an exact quantum completion of gravity.
GR has an ultraviolet problem which is defined as cosmological and black hole types
of singularities. In other words, in the classical modifications, at small scales (UV
areas), the theory fails. Finite higher order theories may be helpful for the UV be-
havior, but result comes with a negative kinetic energy which is a ghost [1]. They
are physical excitations. These excitations are represented by a negative residue in
the gravitational propagator. This negative residue presents itself as negative kinetic
energy which leads to instabilities at a classical level and breakdown in unitarity at
the quantum level. Then, during the interactions, vacuum decays into positive and
negative energy states which is known as Ostrogradsky instability. Some attempts
exist to solve singularities by modifying gravity, such as the fourth derivative gravity,
resulted in the ghosts, where the Hamiltonian of the theory was unbounded due to the
Ostrogradsky instability. By adding higher order derivatives to the theory, instabil-
ity could be avoided with the help of the appropriate choice of the some functions.
Hence, infinite derivative gravity is a possible solution of resolving the ghost problem

and classical singularities. It does not generate ghosts.



A particular form of IDG is free from the types of Ostragradsky instabilities, black
holes and cosmological type singularities [2-8]].

Due to the very complicated form of the field equations of IDG, finding exact solu-
tions to the theory is undoubtedly a rather more difficult task. Nonetheless, remark-
able progress in finding exact solutions to the theory has recently been made in finding
shock and impulsive wave solutions of IDG [8, [9]. In these works, what mainly en-
ables to attain to find the exact solutions to those highly nonlinear and nonlocal field
equations is that the existing waves are described in the Kerr-Schild form, and in turn,
field equations reduce to a linear and non-local differential equation which then turns
into solvable forms. As a follow-up, other exact solutions of the theory have also
been found in [[10,11]] ﬂ In this thesis, we have focused on the exact solutions of IDG
and followed the articles entitled "pp-waves as exact solutions to ghost-free infinite
derivative gravity" [8]] and "infinite waves in ghost-free infinite derivative gravity in
Anti-de-Sitter space-time" [9].

In this chapter, I am going to introduce to some background information for IDG. I
am going to start with introducing some basic concepts of differential geometry and
tie this to the IDG and then give the motivation for IDG, propagators and Newtonian
potential. Also, to understand the other chapters, I am going to emphasize pp-waves
and AdS plane waves space-times. As a subsection, I am going to talk about the cur-
vature tensors of Kerr-Schild-Kundt class.

The second chapter will be aimed to find the exact solutions of the QG and IDG. To
get the explicit solutions, I am going to choose the special form factors that satisfy
ghost-freedom, which will be the same field equation that comes with the pp-wave
solutions of Einstein’s gravity. Also, one can see the solution of the shock wave in
IDG [7].

The third chapter is related to the chapter 2. The later sections include different con-
tent which are impulsive waves in 2+1 and 3+1 dimensions and their subsections [9].

The last chapter will about the conclusions.

! Some exact solutions of IDG in the context of the cosmology were studied in [2| 7, |12] where a specific
assumption has been made on Ricci scalar.



1.1 A Brief Information about Infinite Derivative Gravity (IDG)

1.1.1 Motivation for Infinite Derivative Gravity

The Ostrogradsky instability creates a ghost for the generic theory [2, 3, [13]. This
does not apply when infinite number of derivatives exist . These were first used in
string theory to avoid singularities and then applied to gravity.

The most general infinite derivative action in 4D, parity invariant, metric compatible

and torsion free action is [[13H15]]

1
167G /=g [R + a [RE(O)R + Ry Fa(O) R + Cpupo F3(0)C*77
(1.1)
with
o0 ‘:’TL
F(O) =Y fing gz (12)
n=0 S

where R is the Ricci scalar, 1, is the Ricci tensor, Cy,,, is the Weyl tensor and
G = M%g’ is the Newton’s gravitational constant, o, = # f’s are dimensionless
coefficients which play a crucial role to avoid ghost like instabilities, L] = ¢**V ,V,,
is the d’Alembertian operator. Each [J term comes with the related M? which is a
new mass scale. We work with the (-, +, +, +) metric signature. Note that the Weyl
tensor vanishes precisely in a flat, or conformally flat background.

As a, — 0 or My — o0, the theory reduces to Einstein’s gravity with a spin 2

graviton which is massless.

1.1.2 The Newtonian Potential

One can investigate the effect of IDG on the Newtonian potential, which is a simple
and important application. Even though this is a more difficult problem to solve in
IDG, the result will be better (does not diverge). The Newtonian limit means static
weak-field approximation. In other words, it can be described as weak fields for
which the sources are static.

We consider metric fluctuations around the Minkowski space-time [/15]],

G =N+l || < 1. (1.3)

3



The assumption that /,,, is small enough allows us to ignore everything except the

first order. Hence, one can write an equation as,
g’ =nt" — hH, (1.4)

where W = nHn"Phy, .

L=+—g MT’?R—F %RFl(D)R+ %RWFQ(D)RW + %C’ngFg(D)C’“”m + Lonatter
(1.5)
which is the Lagrangian density, where M, is the Planck mass, 2 is the scalar curva-
ture, I, is the Ricci tensor and the last one ), is the Weyl tensor. One can see
that a, b, ¢,d and f are nonlinear functions of the derivative operators which reduce

in the limit to the constants values of a, b, ¢ and d. The function f(OJ) occurs only in

higher or infinite derivative theories. Here, new relations are necessary,

1 1
a(D)R}, — §nm,c(D)RL -3 f(@0,0,R* = kT, (1.6)

where L is the linearization as well as non-linear functions can be defined as,
a(0) =1+ M, *(F(0) + 2F;(0))0,
(0) = 1 — M;2(4F,(0) + F(0) - gpg(m))m, (1.7)
£(0) = My (4R (0) + 25(0) + 5 F(0).

Hence, the field equations could be derived easily,

1
S [a(0) (O, = 05917 + 0,15)) + e(0) X (Dl + 0 Dp 7 = 1, O)

£(0)0,0,0,0,h°") = —KT,.
(1.8)
We are going to examine the scalar potentials in the non-local theories for short dis-
tances. Then, one can solve the linearized modified Einstein’s equations for a point

sources,

Ty = poy0, = md*(7)0,0)). (1.9)
Because the Newtonian potentials are static,
(a —3¢)0h + (4c — 2a + £)9,0,W" = kp, (1.10)

4



aldhgo + cOh — 0,0, = —kp, (1.11)
For the static metric, the above equations are simplified as,
ds® = —(1 — 2¢)dt* + (1 + 2¢)dr?, (1.12)
where ¢(r) and ¢ (r) are potentials.

2(a — 3¢)[V2¢ — 4V = kp, (1.13)

2(c — a)V2¢ — 4cV*) = —kip. (1.14)

We are going to look at the functions ¢(CJ) and a(0J), there are no ghosts and 1/r
divergence at short distances (UV). For the situation f = 0(a = c¢), the Newtonian
potentials can be solved 1) = ¢. This choice ensures that the theory has not additional

degrees of freedom other than massless graviton.
4a(V*)V?¢ = kp = kmd* (7). (1.15)

Here V2 = 9,0 is the Laplace operator. Now, we understand that to avoid the ghost
problem, a([J) will be an exponential of an entire function. Consider the following

functional dependence relation,
a(d) =e M2, (1.16)

After doing some algebra, in order to reduce the graviton propagator to the GR which

is a special case a([J) = ¢(0J), one can express the potential as [3]],

km [ dp sin(pr)

=0 = |, oty

—km [ dp _»* .
:W i ?pe mZ sin(pr), (L.17)
Gm mr
= €T’f(7)7

(& ’ 1 \/_ e . .
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Now, let us consider the small and large distance behaviours of Newtonian potential.
For the large distances as r — oo, erf(r) — 1, and potential takes the following

form

o(r) = _G_m (1.19)

r

which reproduces the pure GR result. On the other hand, for the small distances, as

r — 0, er f(r) — r, potential reduces to

GmM
VT

Observe that Newtonian potential is constant and hence potential is regular although

o(r) = -

(1.20)

there is a dirac delta function type of singularity.

1.1.3 Propagators

One can realize that ghost like degrees of freedom could be still avoided if the deriva-
tive order is infinite.[16] By modifying the quadratic part of the action as /M ’
one can prevent the presence of the useless poles. The existence of non-polynomial
derivatives makes the action non-local, and this is used to deal with ultraviolet diver-
gences in the loop integrals. This is known as non-local or infinite derivative field
theories.

The propagator for IDG is [17],

) P@ pY
N (e T I T e e ) M
where
a(d) =1+ M, ?*(F,(0) + 2F3(0))0, (1.22)
o) =1+ M, *(—4F(0) — K(O) + gFg(i))i, (1.23)
O — —k* = —k, k" (1.24)

I want to show that there are no ghosts, which are generated because of the negative

residues in the propagator. Hence, we can set the simplest choice [18]],
a(—k?) = ¢(—k?) = e F), (1.25)

6



No extra scalar degrees of freedom. This equation ensures that the theory has not got
an additional degrees of freedom other than massless spin -2 graviton.
Then, the IDG propagator simplifies as [[13]

1 PO PS(O))_ 1
(k)N k2 2k27 a(—k2)

(k*)pg = - (1.26)

where operators P? and P are Barnes-Rivers spin projection operators. The most
important point is to avoid ghost-like instabilities which means that the propagator
does not have any extra degrees of freedom. a(k?) could be chosen to be an exponen-
tial function as a(k?) = 67(5722). This choice tells us that the propagator has no poles

that are additional unlike massless graviton.

1.2 PP-Wave Spacetimes

One can consider the pp-wave metric described by Kerr-Schild form ( g, = 1, +
fkuky) [19-21]
G = M +2HI N, (1.27)

where 7, is the flat (Minkowski) metric and covariantly constant null vector A, sat-
isfies,
M, =0, VA =0, (1.28)

N9, H =0, (1.29)

The null vector is non-expanding, non-twisting and shear-free. To find the pp wave
solution of higher derivative gravity theory, I am going to calculate the Riemann,
Ricci and scalar curvature after finding Christoffel connection. I am going to start

with using the general equation of Christoffel connection,

1
FZV = §gg)\(a,ug/\u + augp)\ - a)\guu)- (130)

Let us use (1.27) and inverse of this equation to obtain the Christoffel connection, and

then substituting these into the general form of Christoffel connection, one get

1
ro, = 5(770A — 2HN AN [20,(HMA) + 20, (HAAy) — 205 (HALA,))]

= " OaA O H + MO, H — A\, 0\H) (131)
+7 P HI9u(A) + 8u(NA) = ()] + O(H?),



and one can simplify the connection equation by using the covariant derivative of

these,
Vi (AA) = (M) — I‘ZA)\J)\V - FZV)\A/\U =0, (1.32)
V(M) = 0, (A An) — F‘;#AU)\A — I\ AuAe =0, (1.33)
Va(Audy) = On( A A) — FKM)\(,)\V — IS, A uAe = 0. (1.34)

By the help of these calculation, the result can be written as

L7, =0 (AMAOH 4+ MM H — N NOH),

= (A NOH + N N0, H — MNP0 H), (1.35)

which satisfies A;1'7, = 0 and M'T'7,, = 0.

One can show that these two equations are satisfied.

The first one is,

MogH=0

o o o O'ﬁ
AU]‘—‘MV = )\O'A )\,uaVH + )\O')\ AyaMH - )\NAV >\0'n 8/3H - O (136)

nullvector nullvector

Second one is,
nullvector =0 nullvector

~ = — ~ =
MO, = MXT NOH + NOHN N, — NN, A 0sH =0.  (1.37)

After these calculations, one can find the necessary terms, the general form of the

Riemann tensor as

Rpauu -

Oy, O,
ax/f — axj + Tpusly, = Tppsl2, (1.38)

One gets the Riemann tensor by using the equations (1.27) and (1.35)),

Rpoyn = (Mpx + 2HAM) (0,15, — 9,1),)
(Mpx + 2ZHAA) [0,(A N0, H 4+ M N0, H — A0 05 H) — 0,( AN, 0, H
AN, H — N A 05 H )
= MO0 H + \pAe 0,0, H — Ny Ao 050, H — A\X,0,0,H — A\A\,0,,0, H

+ ey 050, H.
(1.39)



Finally, the Riemann tensor can be found as,
Roopy = MM 0,0, H + Ao X,0,0,H — A\ \,0,0,H — Ao\, Op0, H. (1.40)

The second necessary tensor is the Ricci tensor and to obtain this one I am going to

introduce a new equation,
Ryy = 0" Rpopn (1.41)

Hence, the Ricci tensor is
R, = -\ \OH. (1.42)

where 9 = n*9,0,. The scalar curvature is zero for the metric of the equation
(1.27).

The last one is the Weyl (or Conformal) tensor. The general form of Weyl tensor can
be found as

(9o Ruo + Goultop — Goullvo — Gor Fup) i (9puus — GovGuo) R
(n—2) (n—1)(n—2)

= AN O H + AN 0,00 H — MNoAu0y 0, H — Ay Ay 0,0, H

Opo’,uu = Rpo',uu +

1
—5(7),»)\#/\0 + na,u)\z/)\p - np,u)\u)\a - T]au)\Mp)aQH
(1.43)

The traceless part of the Riemann tensor is the Weyl tensor. Additionally, any con-

traction with \* vector yields zero.
MCoouy =0, MRy, =0, MR, =0 (1.44)

Two tensors can be represented as,
[R™ (V" R)(V™R)....... (V™ R)| (1.45)

where 7™ R; represents the (0,n; + 4) rank tensor and it builds from the Riemann
tensor. The general form of two tensors composed of a linear combination of R, and

" R,,, which is an important property. I will give a proof for this property.

For the first part is that A being a vector cannot make a nonzero contraction. Hence,

two features are remarkable to understand,

X0, H =0, (1.46)

VA =0. (1.47)



This equation implies that \ is covariantly constant. Hence, A contraction with VZH

is zero.

NV, 8,H = 0. (1.48)

One can see that \ contraction with V2H and other \’s (null vector) are also zero.

After this part, the contraction A vector with V" H’s reduces to a lower order terms,
NIV YV NV Ny H =V, (MY, V.V, H), (1.49)
which is the first step and then,
NNV V0 NV NV H= XNV, V), VWV HL (1.50)

This is the last part that the A cannot make a nonzero contraction.

The only nonzero part,
Vir Vi Vi 2V VPRuns =V Vi Vo ,0OR, (1.51)

where we have used the Bianchi identity on the Riemann tensor for the pp wave metric

defined as [[19]
[V*'R],, = O"R,,. (1.52)

1.3 AdS-Plane Wave Spacetimes

AdS plane-waves are a special kind of gravitational waves propagating along AdS-
space[22].

D- dimensional metric in Kerr-Schild form given as

G = Guv + 2HN A, (1.53)
and the inverse metric given as

g =g —2HN' N\, (1.54)

which is an exact form. Let us note that the similarity with a perturbation where the

metric perturbation is defined as h,, = ¢, — g, and at the linearized level, the

10



inverse metric becomes ¢, = g, — hy.,. Here, g, is the AdS metric. Additionally,

the following relations are satisfied

M, = 0,
Viudv = vy
§uA' =0,
N9, H =0,

Hence, the Kerr-Schild metric is a member of Kundt class
1
fuv;L)\V = guvu/\,u = 5)\I/£M£M7

and
symmetric antisymmetric

VY(EN) =0 == MV, = 'V A

(1.55)

(1.56)

(1.57)

To reach the equation (1.56), one should think about the theorem and its proof, i.e.;

n—1

Yo (] Vi

=1

is reducible. We are going to show how to prove this identity
Vi = )

¢ satisfies the identities,

R

1
)‘mvﬂlguz - _/\#2(15“1&11 - E)v

and
1
AR vul 5/12 = _§>‘u1 5#2&@.

The Christoffel connection of the metric is

.5 which is the background metric of the Christoffel connection g,,, .

Qb s = Va(HNAg) + Va(HN'Ag) — VH(HAAp).

One can also easily show that O 5 satisfies the properties,
=0

_ _ ~ = _
Qb = Vu(HNNg) + Va(H NN,) — VH(HNA5) =0,

11

(1.58)

(1.59)

(1.60)

(1.61)

(1.62)

(1.63)

(1.64)



=0 =0

Iz Ay H X VA%
My = NNV H G + NNV HA — VA HA A = 0, (1.65)
=0 =0 =0
— _ ~ = _ ~ =
A = VoA \g HN + Vg HN AN, —VEH AN N = 0. (1.66)

And thus, the covariant derivative of A\* reduces to the covariant derivative with re-

spect to the background AdS metric,

VA, = VA, (1.67)

Using the Ricci identity in the form

[V, VN = R,o )\, (1.68)
with
VM =0, (1.69)
- - - 3 3
(VuVy = VoV )N = —2G,0 A7 = =2\, (1.70)

2 E
The first one of the left hand side comes from equation (2.28) and the second one

comes from equation (I.69) as zero. Hence, we can reach the final part,

- 3
0N, = —l—2/\l,. (1.71)
I will show how to solve this last equation,
|j/\y = ?Uva)\y - vUvu)\a = [607 vl/]/\o - Rggp)\p~ (172)

Also, the left hand side yields a new equation,
_ _ 1 6
MV = =NIV,ER + 55“@ + 1—2]. (1.73)
To obtain the curvature tensor, we are going to find the Q2,3 part of the Christoffel
connection which is linear in H ,
V'op = —AAg0"H + 2H NN Og) + 2H N \(o&p) (1.74)

12



The contraction of the vector £# with Q2 5 gives,

0 0
§ W ap = —EuNaAg0" H + 2,5:;”@35)[{ + QgpNaiﬁ)H (1.75)
W s = —E N AgO"H.
Also,
0
Wy = — ﬁAﬂaﬂH + 26N Na0p) H + 26N N(o&5) H. (1.76)

The second part of the equation (1.76) gives \*A\g{“0, H.
Finally, for the last part of the equation, the result will be M \g{“¢,H. Hence, the

solution can be reachable,
§ulWap = NA(§*0nH + §°6aH ). (1.77)
Therefore, we can see that the equations are not equal ( V&, # V,.£,)
MO, H = 0. (1.78)
Also, the Kerr-Schild metric satisfies.
V, A =0, (1.79)
which is the geodesic equation.
MV A = 0. (1.80)
By using the following identity, we are going to find the Ricci tensor,
V. Va(HNNg) = [V, Vo] HN N + Vo V. (HNAg) (1.81)
By using equation (1.68]), one can get a new form

VuValHNA) = Rag HN Ag+ R0 s HN A +V o (N0, HAg+ HV N Ag+ HAV ).

(1.82)
With the help of the equations (1.78)), (1.79)), (1.80), one can write
Vi Va(HN'Xg) = Rao HXN Ng + R s HM . (1.83)
Hence, by using R’;VB = —l%(ézgaﬂ — 6ggay), one can reach a new form of the
equation (I.8T)),
_ 1
Roc HN N — l—QH)\“)\J(égguﬁ — 55905). (1.84)
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The second part of the last equation comes as zero,

_ 4
Vi ValHN'Ag) = —55 HAaAs.

Ricci tensor is,

R = R = 2HN X Rop + 57V, o,
O = Va(HNNg) + Vs (HNN,) — V*(HAoAg),

VW05 =V, Va(HNNg) + V, Va(HNN,) — O(HAAg).

By using equation (1.85)) one can find,

— 4 4 _
VuQ“aB = _l—2H)\a)\g — l—QH)\ﬁ)\a — D(H)\a)\g)

_ _ 8 _
Ry = Rf — 2HN' X Ro + (= 5 HAAs — O(HAa)s)

= R = 2HN X" Rog + (= s HX A — 3 (O(H)aAs))

_ 6 8 2
= Rg + l—QH)\”)\g — l—2H)\”)\5 —(p— l—2H))\”)\5,
Rg = Rg + p)\p)\g,
where
_ 3 3
Raﬁ - _l_ggaﬂa
- 2
OH ) = (=0 = 5 H)has
and

3
Ryp = 2908 + pApAs-
Now, I am going to show how to prove the equation (1.92)),

O(HMaA) = VAV HA s + HV Ao As + HA YV, 5),

(1.85)

(1.86)

(1.87)

(1.88)

(1.89)

(1.90)

(1.91)

(1.92)

(1.93)

O(HAoAg) = H\aO g + HAsON, + OHA g + HV*A VA5 + HV A VH A5

+20" H(AsV e + XaVuds),
_ 6

H _
O(HANAg) = —5HAo g + )\a)\g(?f“@ +28,0"'H) + A\ Ag0H,

12
2

14
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where

H - 4
p= —(2§u8"H + 55“& +U0OH — Z_QH) (1.95)
The Riemann tensor has the form,
Ruau,@ - R_'uauﬁ + vZ/gz'uozﬁ - v,BQMw/ + QMVUQJ,B& - QH,BO'QUVOH (196)

where RH,, 5 is the Riemann tensor of AdS space-time which can be expressed as
1

Ruowﬁ - _12

(05 o — 05Gar)- (1.97)
The contraction of the Riemann tensor with two A\* vectors has the form,

AN R s = AN Ri gy, (1.98)

1 1
)‘M)‘V(_Z_Q(szljgaﬁ + 1—255%»

=0 AaAg (1.99)
l—~_  1—— 1
= _l_2 )\1/)\ Gap + l_2 /\B/\ Jav = Z—Q)\a)\g
Also,
[ a 5) 1
NN R g = NN s = =N s, (1.100)
wwr Lo 1,
A%A (_Z_QCS Vgaﬁ+ ﬁéﬁgau)a
1 1 (1.101)
AN g = — s AgAE.

[? 2
The scalar curvature of Kerr-Schild metrics is a constant having a value and normal-
ized as

_ 12

R=R=—. (1.102)

This might be known that the AdS-wave and spherical-AdS-wave metrics belong to
the class of Kerr-Schild-Kundt.

In addition, the trace-free Ricci tensor is,

R
Sy = Ry — Zg“”' (1.103)
One can write this as,
S = pAuAs. (1.104)

by defining p as in (1.95).
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Then, the Riemann tensor can be written as

R
Ryows = Cuavs + (JulvSela = JalvSp)v) + 6 JuvIBla (1.105)

Lots of properties introduced here will be rediscussed extensively in Appendix A3.
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CHAPTER 2

PP-WAVE SOLUTIONS TO HIGHER DERIVATIVE GRAVITY

2.1 Quadratic Gravity

In this section we study the exact pp-waves solutions of quadratic gravity theory [[19,

23,24 ﬂ The action of quadratic gravity is given as

1
I= /d4x\/_—g [;(R —2M\o) + aR* 4+ BR;, +~y(R:,,, — 4R, + R*)| (2.

nvpo

The source free field equations are [25, [26].

1 1 1
;(R/W - §gle + Aoguw) + 20R(R,,, — ZQWR) + 2o+ B) (9w =V, V)R
1 1
+B0(R, — §QWR) + 28(Ryuovp — Zgngp)RUp + 2v[RR, — 2R, R°°
1
R,uUpTRJpT - 2RMURZ - _<gMVR72'>\ap - 4Rc2fp + RQ)] =0

4
(2.2)

To find pp-wave solutions of the theory, let us consider the field equations of quadratic

gravity for the pp-wave metric.

=0 =0
1 ) 1 A~ A~
E[—Ama H — §(mw +2HNN) R + Ao (nuw +2HN )] + 20

=0 ; 1 =0 =0
R T-NNOH = 200 +2HNN) R 1+ 20+ 8) (g + 2HAN)0 = V,V,] " R
=0

9 1 ~ =~ 1 op
+BD[<_)‘;L>‘V8 H) - i(nuu + 2H)\u>\1/> R ] + 2/8<R,Ltovp - Zg,uuRcrp)R

=0 =0 =0 =0

A\

™~ - N

A~ 9 —_— —
+29] R (=AM O0°H) =2 R0, R°? 4+ R)16pr R —2 R0 R,

=0 =0
1 2 2 2
__g/—LV<RT)\Up —4 Rap + R )]

4
(2.3)

1 In this section, for the details on the quadratic gravity, see [24]
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Now, let us compute each term in the field equations by using the relations which are

given in the sec.1.2.

1.
a b
1 op op 1 op
(Ruovp — Zgw,Rgp)R = RuovpR —Zg,w R,,R". 2.4)

(@) Rusp,R7P = 0since R7P AN — NN R, =0,
(b) R;,R°? = 0 because R7? o< A\ and R,, o< A,\,. Hence, by using
equation (1.28)), the answer comes zero. (A°\, = 0, \?)\, = 0).
2. RxR, = (\AO*H)(—A)\,0°H) = 0 since X is a null vector.
3. By using equation ,R,,,,-R,’”" = 0 One can show this by using the properties
(1.28) and (1.29).
Ryopr RT = [(A\uAr0,0,H + Ao A 0,0-H — A\ A\ ,0,0: H — A\ A\:0,0,H)
(AMATO70PH + N NO,0"H — A\ NO°O"H — N N70,0°H))|

=0 =0 =0

=N\ 0,0, HA A, 0°0° H + N0, H A\ A0, N 0,0 H — N O, H A\ 0,0, 0707 H
=0 =0 =0

NN 0,0, HAN,0,0°H + N0 H A\ A,0,\ 070" H + A\ 0,0 HN0,0" H
=0 =0 =0

— NN, 0,0- HA NG00 H — N A? X,0,0- HN0,0° H — N0, H A\, 05\, 0% 0P H
=0 =0 =0

NN, 0y 0- HAT X, 0,07 H + NN, 0,0- HA N, 070 H + N0, H A\, 0 HN0,0°
=0 =0 =0

~ —
N A0, HAO 0P H — NN N 0,0, HND, 07 H + N, H Ay A9\, 0° 07 H
=0
AT N0,0, HA™0,0°H = 0,
(2.5)

Then, we have,
RT,\U,)R”"” = (A A0, H + M A;0:0,H — A\ X;030,H — M A,0-0,H)

(ArAOrDs H 4+ MAg0:0,H — A AgOrO,H — MA,0,0,H) = 0.
(2.6)

Field equations can be obtained as

wm+%mwzo 2.7)



A pp-wave metric that solves 2, = 0 is a solution of the last equation. Additionally,
R, = 0is a vacuum field equation.

By using the definition of Ricci tensor for pp-wave spacetimes, field equations can be

written as
1
O+ —)0*H =0. 2.8
@+ 57 8)
where 0% = 2% + 62 and takes the following form,
(0% —m?%)0*H =0 (2.9)
where m% = —ﬁ is the mass of the spin-2 excitation.

To find the explicit pp-wave solutions of the quadratic gravity theory, let us consider

the pp-wave metric in null coordinates as

ds* = 2dudv + 2H (u, x,y)dv* + do* + dy*. (2.10)

OH = ¢V, V, H = (1" — 2\'\'H)(V,.V, H) @11

=n"0,0,H — n“’TZV&,H.
where u = %(z —t)andv = \/Li(m + t) that are light cone background coordinates.
Covariant vector )\, = 5Zj yields a contravariant vector as \* = ¢/. Then, one can

obtain,
Apdzt = 6de“ = du, o, H =o0b0,H = 0,H = 0. (2.12)

By using, equation (2.12)) and Laplacian for the metric as 9% = 2 62(2% + 0%, 0% =
(95 + (95 . Also, 1| takes the following form [19],

(07 —m3)0T H = 0. (2.13)
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2.2 Infinite Derivative Gravity

PP-wave space-times are exact solutions of the IDG. We also represent that these
waves solve not only non-linear field equations but also the linearized field equations.
Now, we will briefly review the IDG. Also, we will give some basic concepts of the
pp-wave space-times and represent that these space-times are exact solution of the

theory.

2.2.1 The Field Equations of IDG

The most general infinite derivative action in four dimension, around constant cur-
vature backgrounds, parity-invariant, metric-compatible and torsion-free can be ex-

pressed as [1H3]

1

ST / d'o7/=g| R+ 0u(R Fi(O)R+ Ry Fo(O) R + Crapo Fy(D)CH77) .
(2.14)
with
o |:|TL
Fz(D) = Z fin_Mzn (2.15)
n=0 S

where [0 = ¢V, V,. F;(0J) contains infinite derivative functions, f; is a dimen-
sionless coefficients and avoid ghost-like instabilities. In the limit . — 0, theory
reduces to Einstein’s gravity with a massless spin 2 graviton. Also, each [J term
comes with mass scale M? where M < M, = [167G] 2.

The source-free field equations are [4]

Ga5+%[4Gaﬂ F(O) R+¢*® R F(O) R—4 (V°V? — ¢*0) F, (O) R
+4R*, Fy(O) R —¢*" R'Fp(0) R, —4 V,V? (Fp(O) R™) +20(Fy(0) RY)
+2 g™V, V, (Fp(Q) R™) — g C** [3(0) Cpupe +4C%,,, F3(0) CPHo
—4 (R, +2V,V,) (F(0) ¢ —2 Qf +¢° (9, + Q) —2 Q57
+g (8, + Qo) — 4N —2 Q57 + g*% (O, + Q) —8 AT =0.

(2.16)
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Here, the symmetric tensors are given as,

0 n—1
S M S W o
n=1 el P
0 n—1
Qgﬂ = Z fanﬁ;o‘(l)Rfjﬂ("_l_l)? , = Z Fon Z Rﬁ(l)RZ("_l)7
n=1 — =0
Aaﬁ Zf2n Z RBlola)(n=1-1) _ RV;(a(l)RB)a(n—l—l)]%
n=1

Q?ﬁ Zf?mz V)\U CzAU;B(n—l 1) ’ Zf3n Z 5)(\10611/)\0 n— l)7
n—1 n=1

1 :
af v (B|a’ |7a)(”_l_1) vi(a ,8)0’ (n—l—l)
N’ = 5 Zf?mz[%‘”@ n e aledis »
n =0
(2.17)
Now, let us express the field equations for the pp-wave space-times. Hence, the field

equations for the pp-wave space-times take the following form,

1 2 3

a(i a vy 3 2 _ ap 7 v B vya 2
G8 4 2 [4R Zfznmn( NNOH) — g R‘;%fzn\[?ﬂRM —4V,V gfznw,,( M2 H)
4 5 6

(&3 (63 D L\ vV Qf LV po - " Dn
+2D Z fZTL ]\[2,,( A >‘3()2 )+29 Svuv Z fZW ]\[2,,( ) 82 ) g 30! v (Z f3n ]\42")Cm/pz7

n=0 n=0
12 13

+ Z on Z R u(l 1/ n— l) + Z an Z R(B|(f| (n—1-1) RZ;(Q<1)RIJ)U(H7Z71)}; v

n=1 =1 =0
i 3
iBn—l— !
-2 Z Fin Z Cla0C, el g2 (0 Y fa Z Crcyre )
n= n=1 =0

16

A\

00 n—1 h
4 Z fs Z[CPV(Z)WCP(BIUM\;a)(n—l—l) _ vaw;(a(l)cf)w(nflfl); v] =0
n=1 =0
(2.18)
where we used the fact that = (. Recall that the Weyl tensor for the pp-wave

space-times can be described as

Crpr = MAa®yOpH + MA0, 0 H — M\ A,0,0,H — A\ 0,0,H

1 (2.19)
_i(nuUApAy + 77Vp>\a)\,u - nup)\cr)\u - nuo)\p)\u)a2H
Let us give as an example, calculations of the some parts,
1
G’ = R*F — 590‘5}2 = R, (2.20)
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where R = 0.

|:|TL

(1) — BV BORT = RN oy (~0°H) =0,
n=0
where
AVRaV = 07
2 QBR“OO DRR”— BN\ NO*H N - MANOPH) =
()—>g v ZanW p — 9 (_ v )ZfZHW(_N )_07
n=0 n=>0

By using M\, = 0.

|:|T'L

7o (CAATOPH) = 0,

(3) — V,V’ i fon
n=0
By using a property whichis V,\, = 0.
(4) — 20(F(O)R*P) =205, f%%(—)\a)ﬁ@QH).
(5) — by using a property which is VA, = 0.
(6), (7) — By using ¥\, = 0. This property is satisfied by Weyl tensor.

(8) — (R, 42V, V,) (F3(0)CAm) = (—\,\,0%H) F3(0)CPe 42V, Fy(0)CPrve

=0
- 7N ™~ _C,uﬁua

=~ M\ if I cowe gy (), v, TP — _Lpy(O)ORe
n\v SnMQn 3 nYuv 543
n=0

where we used the following relation

V, V0P — %DRW (2.21)

The second part of (8) is V,,V, F3(0)CPrve,

(9), (10) — Q%° = Q, = 0 because R=0.

(12) — Qo = 3202, o 2oy RAVRD =500 fo, >y OVROM'R,Y
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=30 fou S OH=ANOPH) O (=N N0?H) = 0,

Now, one can see that the field equations take a new form,

[R? 4 o (OF,(O)RY 4 2F5(0)ORY

(2.22)
= [1 4 o (OF(0) 4 2F5(0)0) R* = 0.
It is easy to see the field equations in this form,
1+ a.(OF(0) + 2F5(0)0)| R, = 0. (2.23)
By using Ricci tensor definition, the field equations can be rearranged as
[1+ a.(OF(0) + 2F3(0)0)]0*H = 0. (2.24)
Form factors in the equation (2.24)) can be described as
F(O) = i an%, F(0) = i f%%- (2.25)
n=0 n—0

Consider the box operator on acting on H to get L1" /1. By using equation (2.11)), one

can arrange [JH as,
uHd =g¢"*vV,V,H =n"0,0,H — n‘“’FZU&,H (2.26)

One can show that the second terms in (2.26]) will vanish,

=0 =0 =0
77“”[A”)\M&,H+)\">\,,8MH—)\M)\,,n"ﬁagH] = N NO,H +X7 \NO,H— N\, 77”585H =0
(2.27)
where A"\, = 0 and M0, H = 0. Then, the equation (2.26)) can be written as
OH = 0*H, (2.28)

To reduce the field equations of IDG (2.24), one can prove that (1"0*H = 9**(0?H),
O™mH
—
O"0°H = O"(0*°H) = 0* (O"H) = 0*"(0*H). (2.29)
Hence, the field equations of IDG takes the form [8]],
[1+ a.(0*Fy(0%) + 207 F5(0%))]0°H = 0. (2.30)
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2.3 PP-Wave Solutions

In this section , we will construct the exact pp-wave solutions of infinite derivative

gravity [8]]. One can show this,

0? 5 0*°H
oudv +O)H = QGU(%

where 0,H = 0. Hence, the equation (2.30)) takes the form,

OH = 0°H = (2 +0°H =02H, (2.31)

[1+ (07 F»(07) + 207 F3(07))]07 H = 0, (2.32)

Form factors can be chosen as [2, [3]],
_o

—1+e M2
F(O) = — F3(0O) =0. (2.33)
M2
With the choice, theory has no ghosts or extra degrees of freedom other than massless

spin-2 degrees of freedom. The corresponding field equation (2.32) can be found,

O
—1+e M2

M2
O

—14e M2
(1ol e Yot o
e (2.34)
82
<1 —a.M? + ac(e_zvfl?)Mg) O*H =0,

2

,L 2
e W H =0,

where o, = #
Equation could be solved by using the new method which is known as eigenvalue-
method [27],

0*H = —o’H, (2.35)

where H are eigenfunctions and « are eigenvalues. To reach the last field equations’

form, acting on H,

52

o2
e 02 H = en? a*9° H. (2.36)
One can see that the equation reduces to new form,
o1V =0. (2.37)
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Solutions of the source free theory are same with the Einstein’s GR. To see the other
effects and different solutions, one can consider the field equations in the presence of

a source.

2.3.1 Shock Wave Solution of IDG

In this part, we are going to examine the PP-wave solutions in the existence of the ra-
diation sources [J8] ﬂ Gravitational shock-wave solution will explain the gravitational
interactions between high energy massless particles in IDG. Shock waves’ metric

produced by a moving massless point particle can be written as follows,
ds® = —dudv + §(u)g(z )du® + dz? (2.38)

where u = t — 2 and v = t + z are the transverse coordinates to wave propagation and
g(x ) is the wave profile function. To obtain the solution of the exact shock wave
of IDG, we will find the form of the wave profile function g(x ). Let us consider
the massless point particle travels in the positive z direction with momentum p* =
|p| (64 + 6#). The related null source creates the shock-wave geometry can be written

as Ty, = |p|0(x1)6(u). Let us introduce the Ricci tensor for the shock waves,

5(u) 02
Ry = —%EQ(IL)- (2.39)

For the Kerr-Schild form, the energy-momentum tensor can be defined as 7, =

Ip|6(z1)0(u)A,A,. The null source coupled IDG field equations can be recast as
[+ ae(LFo(01) + 201 Fy(91)101 (1) = —167G|plo(w.1). (2.40)

For the form factors, equation (2.40)) becomes a modified Poisson equation,

92

e 2 g(x1) = —167Gp|d (1), (2.41)

By using Fourier transform a solution can be obtained, one can calculate this step by

step,

92

e 2 0%g = —kd(xy), (2.42)

2 In this subsection, or the details, we followed this article [8]
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where x = 167G |p|. By Fourier transformation,

A2
=S (2.43)
o p?
Then,

2 . —

e

27r 27r / / T o 4

27rJ0(pr)

—_——— (2.44)

K e W
— d —zprcos@dé)
Am? /o p p/ ‘

where p.7° = prcos6.

The solution reduces to,

2

o) = & / M To(pr)dp. (2.45)
0

2m p
By using J{(x) = Ji(x). The equation reduces to

d 2
di’ / eI Jy (pr)dp. (2.46)
r 1 rZ M2
g(r) = =8Gp|in(— — =Ei(— ) (2.47)
To 2 4

The equation reduces to a new form (modified Poisson type equation) which is (2.41)
The profile function becomes by using My — oo limit,
r
9(r) = =8GIplin(--), (2.48)
0
which is the Einstein’s gravity result which was expected. Therefore, the gravitational

shock-wave solution metric for IDG is

2 22
ds? = —dudv — AG|p|6(u) (ln(% ~ B )) du? + da?. (2.49)
0

where Ei is the exponential integral function.
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CHAPTER 3

ADS PLANE WAVES IN HIGHER DERIVATIVE GRAVITY

3.1 AdS Plane Wave Solutions of Quadratic Gravity

Quadratic gravity played a crucial role in constructing the solutions of the generic
gravity theory ﬂ The field equations of quadratic gravity are given and for AdS-
plane waves metric reduce to a trace part and nonlinear wave types of equation on
the traceless Ricci tensor @) In this section, we study the exact solutions with the
help of the Chapter 3. To obtain the field equations for PP-waves in this theory with
Ay = 0, one simply takes the | — oo limit. Note that in this limit S, = R,

In the previous section, it was argued that the metric in the form of (I.53)) gives a
detail about the relation between field equations of quadratic gravity and solutions of
the linearized field equations.AdS-plane waves and AdS-spherical waves of quadratic
gravity theories played an important role. We will study here the AdS-plane wave
given as

l2
ds* = = (2dudv + dx.dx 4 dz°) + 2V (u, z, z)du®, 3.1)
z

where v and v are both null coordinates and [ is the AdS radius.
The traceless Ricci tensor is
S = pAuAs. 3.2)

For the class of Kerr-Schild-Kundt metric and for D-dimensional metric, the Ricci
tensor is

3
R,uu = _l_29,u1/ + p)‘u)\u (3.3)

where

p=-(0+ 209, + je'6,— 3 ), G4

' In this chapter, for the details on the AdS plane waves in higher derivative gravity, see [[18].
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which is the scalar function.
The Ricci scalar is

R = Tz (3.5)

Cliavp in terms of the full metric quantities can be written as

Croos = Ay [ — VaOsH — €0 H — %gagﬂﬂ _ %gw (p _ %H)}

r 1 1 4 N7
FAada| = VO H = EuOnH = S8 H ~ Sgu(p— 5 H)
- ; (3.6)
1 1 4
_/\,u)\ﬂ - VaaVH - g(aay)H - §£(X€VH - §guu (p - l_2H>
I 1 1 4 N7
—AaAy | — VuaBH - f(uaﬂ)H - 55#5[3['[ - 59#6 (P - Z_QH)
Then, the definition
1 1 4)
Qup = = [VaOsH + €Oy + Sl +5000(p— 5 H)| 67
The Weyl in tensor in the general form is
Chuavs = AN Qag(sA) (3-8)

3.1.1 The Field Equations of Quadratic Gravity

If we rearrange the equation (2.2)) [23]], by using new properties like o« =0, =0,

v =0,
1 1
E[Ruu - §g,uuR + AO.g,uu] =0, (3.9)
where
3
R, = _l_zg/“/ + A, (3.10)
where
v 3 vV
R = gu Ruu = _l_QgM Guv- (3.11)

One can see easily that this term is valid for four dimensions (D = 4).

4z 2

O:—@+F@—ﬁH, (3.12)

Ay =0. (3.13)
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Hence,

1 2
- O
K[ A ( +l2a 2

which means that H satisfies the p = 0 equation.

Z)H =0, (3.14)

The equation (2.2) is the field equations of quadratic gravity, where

R = Lz (3.15)

2’
3
R/u/ = _l_zg,ul/ + p)‘p)\w (316)

1 1
Sp,u = R/u/ - ZQMVR(R,U,V - Zgul/R>u

3 1 12
S;w = _l_Qg,uz/ =+ pAM)\V - Zg“”(_l?)’ (G.17)
S = PALAL.
For (3.1), the equation can be rearranged as,
1 3 6 12 3
o [ 12 59w 2 59w+ Ang/} + 20‘[ 12 ( l_zgmf - SW)]
72

Ty G+ (2a + B) [gWD - V/Nv] ( - %)
1 12

—l—ﬂ[][—l%gw—sw—§g,w l2}+25[RWZ,pR" 1ngazc,,ﬁ”ﬂ} (3.18)

1
2y [RRW = 2Ry B + Rrops B = 2Rug R = 2902,

1
—gw,Rip — —gw,]??} = 0.

4

By doing the term substitutions and by seperating the terms, I can obtain the next one,

g [%+é}+guy[_24aD 1560 O 186 9} W(_%)

2 2 2 4 4
216y 1 48 40y
+guﬂ(_l—4)+sml[_ +__6D] [l4_l_2]

24aV,V, 12pV,V, 1280
+ l2u + l2u 2

(3.19)
where
op 9 2
R6yp R = l_4‘q“V + Z =S (3.20)
12.3
RR;W = l—Q[ﬁgw + SM”]’ (321)
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6 S

RNJPTRVJPT = l_49,u1/ + 4l—2.

(3.22)

Then, the new form of the equation is,

w2 (5 n) e () g

12
3 [mvm + BV, — 55} —0.

Hence, one can arrange and find this last form of this equation,

Ay 3 18 2 9
(22 + =5 = 157 )ow +B(0+ 5 = M) S, =0, (3.24)
where
171 2
M2:——[———<12 3 )] 3.25
51— (120 +38 (3.25)
f=0 (3.26)
The trace part of the (3.24)) gives
Ay 3 18
T ek 3.27
Kk kl? 4 (3-27)
which also determines the cosmological constant.
The traceless part of the field equation reads
2 9 2
(O + P M=) (O + 1—2)()\MAVH) =0, (3.28)
The metric function H satisfies a fourth-order equation,
4z 2 4z 2 .
<D 50— M2> x (D + 35 0. - l—z)H(u, 7,2) =0, (3.29)

the general solution of (3.29) can be written from the second-order parts; first one is

the pure Einstein theory,

(D 2 2 )Ha(u, 7,2) =0, (3.30)

2R
and the other is a “massive” version of the theory

<D Ly 2 )Hb(u,f, 2)=0. 3.31)

2R
with H = H, + H,. L know H,, let us try to write H, [18]],

Hy(u, @, z) = z¥[ab71],,b(z§b) + ap, Ky, (265)] X sm(g;,.f—l— Apy)- (3.32)

where v, = 1./(D — 1)2 + 41> M>.
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3.2 Infinite Derivative Gravity

In the Kerr-Schild form,

I = Guv + 2HN, N\,

where g, is an AdS background metric. H is a scalar function that satisfies

A, 1s a vector satisfying,

N\, = 0,

The curvature scalar R? is constant. Additionally, the Ricci tensor, becomes

N, H = 0.

vu)\l/ = g(u/\u)7

3

EA' =0

R#y = _l_Qg“V + )\“)\VOH,

where [ is the AdS radius as well as O defines the operator reads,

1
O =—(0+2 &9, + 56", -

4
2

For D = 4, we can obtain traceless ricci tensor (3.17)),

OAH) = OOAH) = =2\

Hence, the equation is,

Also,

D&V:—M&<O+—

2>OH.

To make it more explicit,

Sy = NN OH,

l2

).

O+

2
12

2)

=) P

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)



where h,, = 2HA, A,
Hence, AdS-plane wave metric 1, = g,,, — g With the help of 9,0H =0

n n 2 ! —n
O"Su = (=1)" A\ ((9 + l2> OH =0"S,,. (3.43)
To get the Weyl tensor with the higher order derivative, one can start with
Qv 1 « (0%
Vv, et [RESER AR (3.44)

for constant curvature spacetime.

Then, if one uses V,,V?.5* = £87 which holds the metric tensor (3.33).

R

1
povf _ ~ af af
V,,cred = 2 [0se0 — 5], (3.45)

Hence, one can reach the equation of the Weyl tensor [9]],

V,V,0ncmars — (D LB ) V.V, CrerB = ;(tl + g)n@ _ %)Saﬁ. (3.46)

One can change the field equations of the IDG to a simply form [9],

3 f20 2 - _ 4 _ 4
<A+ 12>9W+ [1+ac[f +—]R+<D+ p)FQ(DS)+2F3(DS_M_QP)(D+Z_2)] Sy = 0.
(3.47)
The trace part of the equation is the cosmological constant,
3
A=-5 (3.48)

12
The traceless part gives non local parts,

f20

12 - 4 4

[1—1—040[ Qo+ (D+l2)FQ(DS)+2Fg(DS MQP)(mP)H (mp)x AMH =0

(3.49)

where
12
R = 2 (3.50)
2
Suw = NMOH = MO+ 5)H. (3.51)

One can choose, the form factors as F; = 0, F;, = 0, F3 # 0, the theory reduces to

spin-2 excitations as well as no spin-0 mode exist [28]].
Fi(O;) = F»(Og) =0, (3.52)
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—(Os+3535)
1 e l JVI 1
F(0.) = 5 O,
+ 12M2

The AdS wave equation (3.49) can be reduced, [9]

Ote) (@

P)A \H =0,

One can write AdS wave metric by using null coordinates,

1 1
u:—(x—t),v:ﬁ

(x + 1),

2

ds?® = l2 (2dudv + dy? + dz ) + 2Hdu?.

z

In the null coordinates,

o= <D+ Pa ;)

422
l2 (82 + (92) - 1—28 T —— 0y 0y,

where 92 = 92 + 9?2

By using equation (3.39), the field equations (3.54) reduce to new form is,

1 2

AL A

fﬁ 78 L\r B 2 ~N
Ot i) <D+l—2>)‘u)‘vH:O’

(B2
(1\/182+]\452l2) — p MZ

—(O +L
Ot 55) )

(1) — e =e

Hence, the first part of the equation is,

e Ot €*M§z2 [z282*2z82+2}
where L, = ]53.
_ - 4z
(2) — [(EH—Z JALA H} D/\#)\VH:—)\HAV(’)H:_/\ )\V|:_(D+l_282_l_2

2% 5 2z 422
— M [Z—Qa — 50, = 0.0, + LYY
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(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

2

(3.63)



Hence, the second part of the equation is,

- 2 22 2z 2
O+ Z—Q))\MAZ,H = )\H)\VZ—QGQ + 50N = F A (3.64)
Therefore, the field equations reduce to
_2282+228272
e M2 220 + 220, — 2]H = 0. (3.65)

One can think that the eigenvalue problem of the operator can be solved as [27],
(220* + 220, — 2)H, = —a*H,,, (3.66)

where H, are the eigenfunctions and w is the eigenvalues. Hence, the equation re-
duces to

(220 + 220, — 2)H = 0. (3.67)
a2
where e ™22 2 = ().

That is, the only AdS wave solutions of the source-free theory are those of the Ein-

stein’s general relativity in the AdS background.

3.2.1 Impulsive Waves 3+1 Dimensions

One can search for impulsive gravitational waves that are generated by massles sources
in IDG [9] ﬂ Since we put a non-zero stress-energy on the right hand side of the equa-
tion of motion, one can expect that the resulting solutions will be affected by presence

of non-local form factors with infinite derivatives.

3.2.1.1 Massless Point-Like Source

Let us talk about the impulsive AdS wave metric,

2

l
ds* = =5 (2dudv + dy? + d=*) +20(u)H(y, =)dus* (3.68)

Consider a massless point particle travelling in the positive z-direction with momen-
tum p* = E(6)' +6"). The metric for this particle g,,, = 26(u)H (y, z), such a particle

could be described by a source,

Tou = E231725(u)d(y)0(2 — 20). (3.69)

2 1In this section, for the details on the impulsive gravitational waves , see [9]].
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The AdS-wave equation is,
22624220, -2
e M (220% + 220, — 2)H(y, 2) = —k6(y)d(z — 20), (3.70)
where the constant k = 167rGEz§.
In order to solve the equation (3.70), we first take the Fourier transform in coordinate

Y

z282+z285+2z8z -2

e M2 (2207 + z20§ + 220, —2)H(y,z) = —rd(y)d(z — 20).  (3.71)

Let us define the Fourier transforms as,

f d e kY, 3.72
k) = <= / of(y (3.72)
1 r iky
fly) = E %da:f(k:)e ) (3.73)
Hence, fourier transform, y — k&
H(y,z) = \/% /g[e dkH (k, z)e™, (3.74)
1 zky
iy) = Py dke (3.75)

The equation (3.73]) turns into,

T (20 2R 4220, - DH(k 2) = ———b(z— %) (BT6)
e 12 PP — 22K+ 220, — 7)== ) G
V2T "

V(:2) " one can rewrite the last equation as,

Using this substitution, H = —
(2202,4220, — k*2* — 2)—=V (k, 2) = —=e(k)V (k, 2),

e(k) K

e "Mie(k)V(k,z) = ——=0d(z — 20), (3.77)

where

v (3.78)



Let’s examine the eigenvalue problem for this operator,

e(k)v® = av®,

v = aJg(—ikz) + bY3(—ikz),
= alg(kz) + bKs(k=2),
= al;5(k2) + bK5(kz),

g=1/2+a B=iB BeR

(R)Ka(k2) = — (B + D ia(k2)

where

Assuming k& > 0,

where

a=0, b=1.

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

where K5 are Bessel functions of the imaginary order. One can express the right part

of the (217) in terms of the eigenfunctions K3

6(z;zo)

Ve

Vi) = [ a [ | @5 Kz Bsinh(x ) s(2) | 1(2)

0

One can arrange this as [29],

2

7T220

0z — 20) = kd(z — 29) = /000 dp K5(kz)Bsinh(tB)K,5(kz),

for arbitrary k > 0,

Z = k’Z, 20 = k’Zo.

Now, one can solve equation (3.77)),

e(k)

vk s
(k,2) = —Fk ) (z — 20),
e(k)
(S 2 _— _ eMZr?
— —Ii/o dﬁwQ—Z()KiB(kzo)ﬁsznh(wﬁ) ) VK 5(kz).
Substitute &,
A -(8*+9)
26 [ e MEZ _
Vik,z) = = / dB —;—5Bsinh(n3) X Kz(kz)K;z(kz).
TT2,/20 JO B +Z
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(3.85)

(3.86)

(3.87)
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After the arrangement, the solution of takes a new form as integral,
For &k > 0 [9],

3 —(52“'%)
- 16GEz; 1 ©  _e MIZ _ _ ,
H(k,z :—0—/dk‘/ df———=PFsinh(nB) X K;5(|k|20) K,5(|k|2)e™
(K, 2) A R A Bﬁ2+§ﬂ () 5([k]z0) Kig(|k]2)
(3.89)
For k < 0,
H(k,z) = H(=k,z). (3.90)
When M, goes to infinity, — % goes to zero. Hence the equation reduces to a new

form, and by using some special integral rules, one can arrange the equation [30]],

=I5 (|k|2) Ks (k|z0|) 2 < 2,
K;5(1k|20) Ki5(|k|2) —{ ,32 ;

/0 ip Bsinh(r3)

3
9
= Pty TIy([Kl20) Ky (klz]) 2> 20.
3.91)
One can arrive at the function,

2GE 4zz
Hgr = 2422422 log (1+— 0 ) —dzz). 3.92
GR 2 (y* + 27 + 25) log ( +y2+(z—zo)2) 22 (3.92)

This GR solution represents an impulsive gravitational wave that is generated by a
massless particle.

The impulsive wave solution of GR diverges at the location of the particle, where
it has distributional curvature. In the non-local impulsive wave solution of IDG is
regular everywhere because of the improved behavior of the propagator in the UV

scale.

3.2.1.2 Massless Linear Source

Twu = Ezl™26(u)d(z — zy) for which one could find an impulsive wave solution.
A linear null source which moves in z-direction with p* = E(d}' + 6*) which is
momentum and extends to infinity in y-direction. The choice of the source says that
the function H could be independent of y. Hence, the field equation takes a simpler
form,

_ 228§+2z82 -2

e MIT (2207 4220, — 2)H(2) = — L4 (2 — %), (3.93)

where L, = 167G E 2.

After transforming the equation to the coordinate w = logz and defining H (w) =
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H(e"), one can write,

(0240w —2)
~ e ML2
Hw) = —Lie ™S §w—
= Le "0 es(830+8w72)5(w — wp)ds,
@ (3.94)
= Lye™™ e 2% 5 (w — wo + 5),

1
MmL2
.2
) o st
H = Lje™ ™ dse™?* / A ——6(w — wy + ).
Ms%ﬂ R A7s

One can return back to the variable z, one can obtain the solution of (3.93) [9],
8rGE [ 4 3 Ml z 3 Ml z
- 28 oty ) s s+ L)
32222 [zoerfc<2Msl 2 Og(zo) +erfe 2M,l * 2 Og(zo)
(3.95)

H(z)

which is plotted in figure, where w — Log(z) and wy — Log(2o).

H(z
A0

local

nonlocal

Figure 3.1: The red curve represents the solution of IDG and the blue curve represents

the solution of GR (Mathematica).

By calculating with the local limit M, — oo, one can reach the GR solution,

StGEz 23 23
Hop = (1+—§—|1——gy>. (3.96)
20 z z

The GR solution has a discontinuity at the location of the source z = z(, in contrast

to the IDG solution is smooth everywhere.

3.2.2 Impulsive Waves In 2+1 Dimensions

In this subsection, we have followed [9], solutions in 2 + 1 dimensions will be studied.

The motivation for this section comes from the fact that the basic parts which are
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almost the same, but focus on the crucial differences from the 4D case.
Weyl tensor is zero in 2+1 dimensions so the IDG action contains only the form
factors. Hence, the traceless part of the source-free field equations in 3-D will be

reduced to

1+ ac[ — %(fm + %) + O+ %)Fﬂ‘js)}

x<ﬂ+%M&H>:069D

One can get this equation from the equation (3.49), where Fj is zero. One needs to
set the form factor F5([J,) to be in this form to avoid ghost like degrees of freedom.
Ghost gives the negative KE and one of the purpose of the IDG is avoid this ghost
instabilities.

Now, one can note that the field equation is independent of the form factor F; ([J;).

In the next section, solutions in the presence of the non-zero source will be found.

3.2.2.1 Massless Point-Like Source

Consider a point-like particle moving in the positive x-direction with the momentum
p* = E(8 + §*) with the stress energy tensor Ty, = Fz21726(u)d(z — zp). This
source together with the impulsive-wave profile H = §(u)H (z) leads to a new equa-
tion,

_ z283+3z62

e M (2297 4 320,)H(z) = —L3d(z — %), (3.98)

where L3 = 167G3E22/C.

With the help of the w = logz, H(w) = H(e") and with the Heat-Kernel method,

(82 +20u)

22
- e ]Msl

H(w) = —Lgeiw

¢ ———=0(w — wyp),

— (w—w)?

:Lewo/ ds | dio—=2—§( — wy + 2s
’ 1/M12 R Vars ( ° )

which is same calculation with the equation (3.94).

The particular solution of equation (3.98) is [9]],

AdrGsEz 1 M.l z 1 M.l z
H(z) = —C; 0 zgerfc(M 1T 5 log(z—0)> +z2erfc(M ; + 5 log(z—)) ,
(3.100)
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- |ocal

----- nonlocal

Figure 3.2: The red curve shows the solution of IDG and the blue curve represents

the corresponding solution of GR.

which can be plotted in the figure.

By calculating the local limit M/, — oo, one can reach the GR solution,
22 22
Hop = 4nGsEz | 1+ = — |1 — = (3.101)
z z

3-D GR solution is stable but has a discontinuity at z = z,. This discontinuity prob-
lem is solved by infinite derivatives. The IDG impulsive wave solution is smooth
everywhere. The full solution approaches the general relativity solution at the confor-

mal infinity (¢ = 0). The metric of the GR solution is just the AdS metric.
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CHAPTER 4

CONCLUSIONS AND LAST REMARKS

In this thesis, we have firstly studied pp-wave space-times in ghost-free infinite deriva-
tive gravity and shown that these space-times are exact solutions of the theory. The
pp-wave metrics also solve linearized field equations of the IDG for the pp-wave
space-time. By using the metric in the Kerr-Schild form gives an important simpli-
fication on the field equations. We have demonstrated that, as expected, sourceless
theory does not bring any pp-wave solutions other than that of GR since non-local
interactions do not affect source-free linear field equations. To discuss the effects of
non-local interactions, we have considered null source coupled field equations and
found exact gravitational shock wave solution of the theory.

Secondly, we have studied the pp-wave solutions of the IDG as in the pp-wave case,
the exact AdS-plane wave solutions of sourceless theory are also solutions of GR. In
the presence of a source, we constructed impulsive waves created by massless sources
in 2+1 and 3+1 dimensions. The non-locality described by form factors with higher
derivatives which plays an important role in the non-zero source. The solutions which
have obtained of the IDG are regular everywhere due to non-local interactions. The
solutions which we have found get modified because of the non local impacts in the
UV part, but not in the IR part.

The field equations of IDG were examined. Symmetric tensors were given in the
chapter 2 which containing the double sums and they are too hard to solve explic-
itly. We determined the full equations of motion and we can see that if one keeps the
terms linear in curvature, can find out the linearized limit in flat-space without using
any new degrees of freedom which is expected.

We observed that even though gravitational shock-wave solution comes with a source

which has Dirac delta type singularity, the solution is regular at the location of source
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because of the gravitational non local interactions. Then, we have found a non-
singular gravitational shock-wave solution at the non-linear level.

The solutions given in this thesis are crucial solutions. Few exact solutions exist in the
quadratic gravity theories and gravitational waves have lots of unexplored possibili-

ties. Also, the quadratic theories are rare in the literature, so these are very interesting.
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Appendix A

USEFUL FORMULAS AND BIANCHI IDENTITIES

A.1 Curvature

The christoffel symbol formula is,

]' T
b = 20" Outir + 0~ 0:00)

The Riemann tensor and its properties are,

R o = 05Ty — 0, + T2, 1%, — T T

opt ap apt o
Rpa,ua - gpA(aurig - aaria)

R;wcz\a - _Rau)\a = R[LOCO’)\ = R)\oua

The Ricci tensor is symettric,

R, =R,
The Ricci scalar is,

R=g"R,, =g" = 0.5, — 0"T%, + g%, %, — g% I

apt vy vpT ay

A.2 Bianchi Identities and Riemann Tensor Properties

(A.1)

(A.2)

(A.3)

(A4)

(A.5)

(A.6)

The Bianchi Identity equation is the fundamental equations to find the Einstein equa-

tion.

In general relativity and tensor calculus, the contracted Bianchi identities,

V*Gy = 0,
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where G, is the Einstein tensor such that

G = By~ 500 (A8)
where I?,,, is the Ricci tensor and R is the Ricci scalar. One can write this as,
VR = %V,,R. (A.9)
The usual Bianchi identity is
ViR’ + ViR’ + VaRuw," =0 (A.10)

where R’, »p 18 the Riemann tensor.

Remember the following properties of the Riemann tensor

R,u,u)\p - _Ry,u)\pa R,uz/)\p = _R/J,l/p)\J R;w)\p = R)xpw/ (All)

A.3 Bianchi Identities for the Weyl Tensor

Once contracted Bianchi identity is
VVRuaVﬁ = vuRa,B - vaRuﬁa (Alz)

for constant R, gives

V" Ryavs = V uSaps — Vo Sus. (A.13)

Contracting one more time, one has

VS =0  for R:const. (A.14)
and we can get
D -3
VHC s = D (V Sga — VSua) (A.15)

contracted once, for constant curvature spacetlmes.

Then, V#VVC 0.5 Will be

VIV Cravp = g Z)(DSag — VHVuS,8) (A.16)

Then, using
VIV S, = %Sm,. (A.17)

We can get
VIV Chanp = %(DSQB — %Saﬁ) (A.18)



A.4 The Specific Calculation

One can obtain the equation (3.46), I will show how to get this equation step by step,

v, v,ocre? =v,[v,,V, |V ors + v ,V,V, Vo Crers

=V, |R,s"\V C"P + R, \V7C*P + R,,*\VC*" " + R,," \V7CHN
R,,°\VoCre | + v, V,V, Vet
=V, | = RV CrYP 4 VO 1V, CFF 4 R\ CHN 7, OHePA
+V,.V,V,VoCrerp
= Vi |VA(CHAX 4 0P 4 CroP) | 4V, V,V, V7 Crerd
v, v,0crt =v,v, v,V crers
(A.19)
where
V, V(OB = (A.20)
The covariant derivative of the Weyl tensor comes as zero.
Ry, VA CH = pA MCHE = —pA A, VACH = 0 (A21)
V.V, V, |V creh =v v, V,CrP -\ N,V , Ve CrerP (A.22)

If we try to solve the last equation, we are going to start with,
v,.v,0crt =v,v,v,vecHers
= V,0V,Cr + Vv, VIV, V,] s

— v#\:\vucuw/,@ + VMVU[RVUH)\C)\OW/B + Ryoa/\c,u)\l/ﬁ + Rygu/\cuoa)\ﬁ + Rygﬁ/\c«uau)\]

= v, 0v,CcreN 4 v, v° %(Cﬁ“ﬁ + O 4 CF) + RgpCHoN

R « o « 3 (87
—(C, w08 ")+ (——2gax)0“ AB

— uaf o
V,0V,Cr N 49,97 | z

(A.23)
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where

3
RU)\ - Z_Q.QJ)\ + )\O')\)\O (A24)
=0
a\B o R [apB] 3 a B
=Vv,av,cr” + v,V (C“)ZC“U
N oo (A.25)
=V, 0V, 0t — 12 [v vV, CHooh
_ a\f o af
- v,0v,C* 212[ S S ]
where ) B
VHVVC“‘“’ﬂ = —[DS“ﬁ — —Saﬁ]
3 (A.26)
_ parg ap op
v,.av.,c 572 —[OS +l S
If we look at for the 4-D,
12
R = 7 (A.27)
V,.V,0ckes = v, 0V, crevs — 2?2 [0S + Saﬂ] (A.28)
Let’s define a new value,
3 4
aﬁ _ = af = qap
A 212[ S+ ZQS ] (A.29)

Then,

V.V, OCH =NV N, V,Cr 4 [V, V]V, CH 4 A%
= VoV, V,V,C" + A% 1 [R,,” \ VAV, CF + R, VIV, CHer?
+R," V7V, C + R,,P VIV, 0" + R, VIV, O
= VIV, V,V,CH 4+ AP 4 [~ R\VAV,CHY 4 R\ VOV, CAP

R
12

R
_ vavuvgvycuauﬁ_l_Aaﬁ_{_Evyv)\[_c«)\auﬁ+CaAVB+CVaAﬁ+CﬁaVA]
=0

R —N—
= VIV, VoV, CHrl 4 A%+ 2V, V5[ O 4 0]

—(=V, VO 1V, V,CM + V,V, 0" 1+ V,V, P

= VoV, V,V, 0P 4 A0 zzv ANC

= V"Vﬂvgvycuwﬁ [DSQB + Saﬁ]

af af3
5 [DS +l S

(A.30)
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Hence, the equation is,
v, v, acr? =vov,v,Vv,cres 4 pes (A.31)

where

4

1
al aB
B = (05" + 5

% 5°°) (A.32)

When we substitute B*? instead of the (A.32), calculations continue in the same way,

v, v, 0crs =vov,v,v,Ccrers 4 pes
=0v,V,Crs 4 VIV, V,|V,CrP 4 B*P
=0V,V,C" + B*® + V([R,,, "V \C""? + RV, C**F + R,,* \V,C'"P
+R,."\V,C"Y + R,,P ¥V, Cr

R
=0V,V,CrP + B 4 v ﬁ(—vucwaﬁ +V,C% v, ,cre v, P )

+Ra/\vuc)\alj[8
avf3 afs R ao 3 Bao aofB oBa 3 ocav
=0v, Vv, " + B +V, ﬁ(vﬂ[—cﬂ + CHPOT - CHaTP 4 CHIPA]) — ﬁV”C
av, (0% 1 Qo oo 3 [oge})
=0v,V,C* PB4V, | — ﬁvu(_cu B 4 oulBacly _ l_zvﬂcuﬁ
v o 2 (6708
=0V,V,CrF + B*P 4 ~5[VoVuC" d
(A.33)
Hence, the equation turns into the
v, vV, ,O0ck? =0y, v, crevs 2 05«8 45"5 A.34
A2 - nyYv - l_2 + l_2 ( . )
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v,V ,02CrP = v, v, veOorer?
=V,V,v, vockt +v,v,, v, veocrers

=V,V,V,v°Oc*? +V,|R,,",\V*OC**? + R,,*\voOC "

_i_Ryaa)\voljcv,u/\uB + Rygu}\vamcya/\ﬁ + Rygﬁ/\vamc«uau)\

=0 =0

—RAVAOCH 4 R\ VOO 47,0

= V,V,V,v°Ocres 4 v,

+V,\OCHP 4 v, ok

CHnlBral=0

OHBA + CrabA + CHAeB

— V,V,V,VeOcH? 4 v,v,0

(A.35)
The equations continue with the next calculation part, we are going to give new defi-
nition as C°%.

Therefore, the equation is

vV, 2cre = v, v, Vv, veacker? (A.36)

v, Vv, 02cret = v ,vov,v,00ms
=V,Vv°v,v, 00" +v,V°(V,,V, 00"

= Vv, 0V, 00" + V,V7 | R,."\OC*"? + R,,*\OC""’ + R, \OC" + R,,”\0CH

R
=V, 0v, 00 +v,V° E(DO(,W +0C",* + 00 ) + R,\0CH

R 3
= VMDV,,DC’“"”B +V,V, ED(CMBM 4 OHeaB | Cuaﬁa) _ Z_QDCWUB

=0

—
R (Cu[ﬁaa}) _

il 3
12

mlelids

= v, 0v,00" +v,V,

(A.37)
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One can examined, the other denominations, and try to simplify these parts,

3
v, V,2Crerf = v ,0v, 00 — Z—QVMVJDC“Mﬁ (A.38)
v,V ,02Cres = v ,0v, 008 + 0P (A.39)
where
aB 3 paop
¢ = =5V, V,0C (A.40)

If we try to solve the last part,

v, Vv,02crert = v,v, Vv, 00 - 0f 11V, V,| VIV, 00HP

— V,V,V°V,00 4 ¢ + |R,,” \V*V,0C*" + R,,, V°V,0C"""

R,,"\ V'V, 0C*" + R,,*\V'V,0C*"* + R, \V°V,0C"" + R’ V7V, 0CH"

= V,V, VoV, 0cH 4 cof 4+ | — R, VAV, 00" + R,\V°V,0C ¢

R
+E(_VVVADC)‘O‘V5 + V)\VVDCOU\VB + v)\vl/DClla)\ﬁ + v)\vymcﬁaw\)

R
= VoV, Vov,a0e 4 0F 4

— V,V,\Ocrs 4 VAV,,D(C”W“])]

ag v 3 (6703 1 v (0%
=V, V.V, 00" — 59,004 + 5v,V,00"
2

VWV = VoV, V79,0 — 5V, V001
(A41)

Let’s define a new term,

2

af _
D=

v, Vv, ackes (A.42)
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v,V ,0*crevt =v,v,VoV,CrerP 4 P
=0v,v,00F + v°(V,,V,|Vv,0C" 4 D

=0v,v, 00" + D* + V7| R, 'V, \O0C*""" + R,,* V,0C*" + R,,*\V,0

C" + R,."\V,0C"Y + R,,” v, 0CH

R

> I/D Aavf Y
R,V ,QC D

=0v,v,0c"? + D*% +v° v,acke,”

R
+E(VVDC%”B + v, 0cve,f + v,act )

=0

R N
v, O]

3 R
= 1/|:| cavfl ikl
v, ac 7

12 12
3

2

=0V, v,0C"" + D* 4V, v, 0creos 4

2 1
= 0V,v,00" - 5V,9,004" = 5V, 9,00 4 5V,V,000

V,.V,0cHbva

5 /_/%
v, Vv, acotrey v, 0Fcrers

1
B —

[2

Qav, 4 v,
=0v,v,0cHs — V.V, 00" A
4

=0V, v,0cr — 2y, v, 00 1

= (O- p)vuvymowﬁ
(A.43)
One can know that
4
v.v,Ocee = (0- l—g)vﬂvymwﬁ (A44)
Therefore,
42
Vv, O = (O - Z—Q) V,V, (o8 (A45)
Hence, one can get the general form of these two last equations ,
RN\n 1 R\n R
Ve — (T4 5) APEEEES (o+ 5) (o- §> S8 (A.46)
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